1
|
Al-Ayari EA, Shehata MG, El-Hadidi M, Shaalan MG. In silico SNP prediction of selected protein orthologues in insect models for Alzheimer's, Parkinson's, and Huntington's diseases. Sci Rep 2023; 13:18986. [PMID: 37923901 PMCID: PMC10624829 DOI: 10.1038/s41598-023-46250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Alzheimer's, Parkinson's, and Huntington's are the most common neurodegenerative diseases that are incurable and affect the elderly population. Discovery of effective treatments for these diseases is often difficult, expensive, and serendipitous. Previous comparative studies on different model organisms have revealed that most animals share similar cellular and molecular characteristics. The meta-SNP tool includes four different integrated tools (SIFT, PANTHER, SNAP, and PhD-SNP) was used to identify non synonymous single nucleotide polymorphism (nsSNPs). Prediction of nsSNPs was conducted on three representative proteins for Alzheimer's, Parkinson's, and Huntington's diseases; APPl in Drosophila melanogaster, LRRK1 in Aedes aegypti, and VCPl in Tribolium castaneum. With the possibility of using insect models to investigate neurodegenerative diseases. We conclude from the protein comparative analysis between different insect models and nsSNP analyses that D. melanogaster is the best model for Alzheimer's representing five nsSNPs of the 21 suggested mutations in the APPl protein. Aedes aegypti is the best model for Parkinson's representing three nsSNPs in the LRRK1 protein. Tribolium castaneum is the best model for Huntington's disease representing 13 SNPs of 37 suggested mutations in the VCPl protein. This study aimed to improve human neural health by identifying the best insect to model Alzheimer's, Parkinson's, and Huntington's.
Collapse
Affiliation(s)
- Eshraka A Al-Ayari
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Magdi G Shehata
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS) , Nile University, Giza, Egypt
| | - Mona G Shaalan
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Anselmi C, Kowarsky M, Gasparini F, Caicci F, Ishizuka KJ, Palmeri KJ, Raveh T, Sinha R, Neff N, Quake SR, Weissman IL, Voskoboynik A, Manni L. Two distinct evolutionary conserved neural degeneration pathways characterized in a colonial chordate. Proc Natl Acad Sci U S A 2022; 119:e2203032119. [PMID: 35858312 PMCID: PMC9303981 DOI: 10.1073/pnas.2203032119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022] Open
Abstract
Colonial tunicates are marine organisms that possess multiple brains simultaneously during their colonial phase. While the cyclical processes of neurogenesis and neurodegeneration characterizing their life cycle have been documented previously, the cellular and molecular changes associated with such processes and their relationship with variation in brain morphology and individual (zooid) behavior throughout adult life remains unknown. Here, we introduce Botryllus schlosseri as an invertebrate model for neurogenesis, neural degeneration, and evolutionary neuroscience. Our analysis reveals that during the weekly colony budding (i.e., asexual reproduction), prior to programmed cell death and removal by phagocytes, decreases in the number of neurons in the adult brain are associated with reduced behavioral response and significant change in the expression of 73 mammalian homologous genes associated with neurodegenerative disease. Similarly, when comparing young colonies (1 to 2 y of age) to those reared in a laboratory for ∼20 y, we found that older colonies contained significantly fewer neurons and exhibited reduced behavioral response alongside changes in the expression of 148 such genes (35 of which were differentially expressed across both timescales). The existence of two distinct yet apparently related neurodegenerative pathways represents a novel platform to study the gene products governing the relationship between aging, neural regeneration and degeneration, and loss of nervous system function. Indeed, as a member of an evolutionary clade considered to be a sister group of vertebrates, this organism may be a fundamental resource in understanding how evolution has shaped these processes across phylogeny and obtaining mechanistic insight.
Collapse
Affiliation(s)
- Chiara Anselmi
- Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Mark Kowarsky
- Department of Physics, Stanford University, Stanford, CA 94305
| | - Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, 35131, Padova, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, 35131, Padova, Italy
| | | | - Karla J. Palmeri
- Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco CA 94158
| | - Stephen R. Quake
- Chan Zuckerberg Biohub, San Francisco CA 94158
- Departments of Applied Physics and Bioengineering, Stanford University, Stanford, CA 94305
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco CA 94158
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
| | - Ayelet Voskoboynik
- Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco CA 94158
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, 35131, Padova, Italy
| |
Collapse
|
3
|
Mauro M, Queiroz V, Arizza V, Campobello D, Custódio MR, Chiaramonte M, Vazzana M. Humoral responses during wound healing in Holothuria tubulosa (Gmelin, 1788). Comp Biochem Physiol B Biochem Mol Biol 2020; 253:110550. [PMID: 33359143 DOI: 10.1016/j.cbpb.2020.110550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023]
Abstract
Wounds in living organisms trigger tissue-repair mechanisms. The sea cucumber (Holoturia tubulosa) is an excellent model species for achieving a better understanding of the humoral and cellular aspects involved in such healing processes. Consequently, this study assesses data on its morphometric, physiological and humoral responses 1, 2, 6, 24 and 48h after wound induction. In particular, morphometric data on the weight, width, length and coelomic-fluid volume of the species were estimated at different times during our experiments. In addition, the humoral aspects related to the enzymatic activity of esterase, alkaline phosphatase and peroxidase, as well as the cytotoxic activity of cell lysates (CL) and cell-free coelomic fluids (CfCf) are evaluated for the first time. Our results reveal a significant decrease in body length and weight, along with time-dependent, significant changes in the esterase, alkaline phosphatase, peroxidase and cytotoxic activity in both the CL and CfCf. The data obtained lead to the pioneering finding that there is an important time-dependent involvement of morphometric (changes in weight and length) and humoral (enzymatic and cytotoxic) responses in wound healing.
Collapse
Affiliation(s)
- Manuela Mauro
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Vinicius Queiroz
- Departamento de Fisiologia, Instituto de Biociências and Centro de Biologia Marinha (NP-BioMar), Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Arizza
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Daniela Campobello
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Márcio Reis Custódio
- Departamento de Fisiologia, Instituto de Biociências and Centro de Biologia Marinha (NP-BioMar), Universidade de São Paulo, São Paulo, Brazil
| | - Marco Chiaramonte
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy.
| |
Collapse
|
4
|
Gama Sosa MA, De Gasperi R, Elder GA. Modeling human neurodegenerative diseases in transgenic systems. Hum Genet 2011; 131:535-63. [PMID: 22167414 DOI: 10.1007/s00439-011-1119-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/23/2011] [Indexed: 02/07/2023]
Abstract
Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
5
|
Sullivan JC, Finnerty JR. A surprising abundance of human disease genes in a simple "basal" animal, the starlet sea anemone (Nematostella vectensis). Genome 2007; 50:689-92. [PMID: 17893746 DOI: 10.1139/g07-045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Invertebrate animals have provided important insights into the mechanisms of, and treatment for, numerous human diseases. A surprisingly high proportion of genes underlying human disease are present in the genome of a simple, evolutionarily basal invertebrate animal, Nematostella vectensis, including some genes that are absent in established invertebrate model organisms. This, together with the laboratory tractability and regenerative capability of N. vectensis, recommends the species as an important new experimental model for the study of genes underlying human disease.
Collapse
Affiliation(s)
- James C Sullivan
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
6
|
Brignull HR, Morley JF, Morimoto RI. The stress of misfolded proteins: C. elegans models for neurodegenerative disease and aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:167-89. [PMID: 17205684 DOI: 10.1007/978-0-387-39975-1_15] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing number of human neurodegenerative diseases are associated with the expression of misfolded proteins that oligomerize and form aggregate structures. Over time, accumulation of misfolded proteins leads to the disruption of cellular protein folding homeostasis and eventually to cellular dysfunction and death. To investigate the relationship between misfolded proteins, neuropathology and aging, we have developed models utilizing the nematode C. elegans. In addition to being genetically tractable, C. elegans have rapid growth rates and short life-cycles, providing unique advantages for modeling neurodegenerative diseases of aging caused by the stress of misfolded proteins. The C. elegans models described here express polyglutamine expansion-containing proteins, as occur in Huntington's disease. Through the use of tissue-specific expression of different lengths of fluorescently tagged polyglutamine repeats, we have examined the dynamics of aggregate formation both within individual cells and over time throughout the lifetime of individual animals, identifying aging and other genetic modifiers as an important physiologic determinant of aggregation and toxicity.
Collapse
Affiliation(s)
- Heather R Brignull
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, 2153 North Campus Drive, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
7
|
Abstract
A growing number of human neurodegenerative diseases are associated with disruption of cellular protein folding homeostasis, leading to the appearance of misfolded proteins and deposition of protein aggregates and inclusions. Recent years have been witness to widespread development of invertebrate systems (specifically Drosophila and Caenorhabditis elegans) to model these disorders, bringing the many advantages of such systems, particularly the power of genetic analysis in a metazoan, to bear on these problems. In this chapter, we describe our studies using the nematode, C. elegans, as a model to study polyglutamine expansions as occur in Huntington's disease and related ataxias. Using fluorescently tagged polyglutamine repeats of different lengths, we have examined the dynamics of aggregate formation both within individual cells and over time throughout the lifetime of individual organisms, identifying aging as an important physiological determinant of aggregation and toxicity. Expanding on these observations, we demonstrate that a genetic pathway regulating longevity can alter the time course of aging-related polyglutamine-mediated phenotypes. To identify novel targets and better understand how cells sense and respond to the appearance of misfolded and aggregation-prone proteins, we use a genome-wide RNA interference-based genetic screen to identify modifiers of age-dependent polyglutamine aggregation. Throughout these studies, we used fluorescence-based, live-cell biological and biophysical methods to study the behavior of these proteins in a complex multicellular environment.
Collapse
Affiliation(s)
- Heather R Brignull
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|