1
|
Ellis EG, Meyer GM, Kaasinen V, Corp DT, Pavese N, Reich MM, Joutsa J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. NPJ Parkinsons Dis 2024; 10:154. [PMID: 39143114 PMCID: PMC11324766 DOI: 10.1038/s41531-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Nicola Pavese
- Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Upon Tyn, UK
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Noa B, Tamara S, Gitit K, Roy A, Mali GW, Orly G, Tal G, Orna A, Dafna BB, Yifat A, Anat M, Avner T, Nir G, Nurit O. The natural history study of preclinical genetic Creutzfeldt-Jakob Disease (CJD): a prospective longitudinal study protocol. BMC Neurol 2023; 23:151. [PMID: 37069531 PMCID: PMC10108539 DOI: 10.1186/s12883-023-03193-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Creutzfeldt-Jakob Disease (CJD) is the most common prion disease in humans causing a rapidly progressive neurological decline and dementia and is invariably fatal. The familial forms (genetic CJD, gCJD) are caused by mutations in the PRNP gene encoding for the prion protein (PrP). In Israel, there is a large cluster of gCJD cases, carriers of an E200K mutation in the PRNP gene, and therefore the largest population of at-risk individuals in the world. The mutation is not necessarily sufficient for the formation and accumulation of the pathological prion protein (PrPsc), suggesting that other, genetic and non-genetic factors affect the age at symptoms onset. Here we present the protocol of a cross-sectional and longitudinal natural history study of gCJD patients and first-degree relatives of gCJD patients, aiming to identify biological markers of preclinical CJD and risk factors for phenoconversion. METHODS The study has two groups: Patients diagnosed with gCJD, and first-degree healthy relatives (HR) (both carriers and non-carriers of the E200K mutation in the PRNP gene) of patients diagnosed with gCJD. At baseline, and at the end of every year, healthy participants are invited for an "in-depth" visit, which includes a clinical evaluation, blood and urine collection, gait assessment, brain MRI, lumbar puncture (LP), and Polysomnography (PSG). At 6 months from baseline, and then halfway through each year, participants are invited for a "brief" visit, which includes a clinical evaluation, short cognitive assessment, and blood and urine collection. gCJD patients will be invited for one "in-depth" visit, similar to the baseline visit of healthy relatives. DISCUSSION This continuous follow-up of the participants and the frequent assessments will allow early identification and diagnosis in case of conversion into disease. The knowledge generated from this study is likely to advance the understanding of the underlying clinicopathological processes that occur at the very beginning of CJD, as well as potential genetic and environmental risk factors for the development of the disease, therefore advancing the development of safe and efficient interventions. TRIAL REGISTRATION The study is an observational study. It has registered retrospectively in https://clinicaltrials.gov/ and has been assigned an identification number NCT05746715.
Collapse
Affiliation(s)
- Bregman Noa
- Cognitive Neurology Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Shiner Tamara
- Cognitive Neurology Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Kavé Gitit
- Cognitive Neurology Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Department of Education and Psychology, The Open University, Ra'anana, Israel
| | - Alcalay Roy
- Laboratory of biomarkers and genomic of neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Gana-Weisz Mali
- Laboratory of biomarkers and genomic of neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Goldstein Orly
- Laboratory of biomarkers and genomic of neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Glinka Tal
- Laboratory of biomarkers and genomic of neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Aizenstein Orna
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Ben Bashat Dafna
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Alcalay Yifat
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Clinical Laboratories, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Mirelman Anat
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Laboratory of early markers of neurodegeneration, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Thaler Avner
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Laboratory of early markers of neurodegeneration, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Giladi Nir
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Omer Nurit
- Cognitive Neurology Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Laboratory of early markers of neurodegeneration, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| |
Collapse
|
3
|
Zi Y, Cai S, Tan C, Wang T, Shen Q, Liu Q, Wang M, Li J, Zhang L, Zhou F, Song C, Yuan J, Liu Y, Liu J, Liao H. Abnormalities in the Fractional Amplitude of Low-Frequency Fluctuation and Functional Connectivity in Parkinson's Disease With Excessive Daytime Sleepiness. Front Aging Neurosci 2022; 14:826175. [PMID: 35865749 PMCID: PMC9294344 DOI: 10.3389/fnagi.2022.826175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Excessive daytime sleepiness (EDS) is one of the most important non-motor symptoms of Parkinson's disease (PD), and its neuropathologic basis is still unclear. Objective This study investigated the changes of neuronal activity in PD patients with EDS (PD-EDS) in the resting state. Methods Forty-three PD patients were recruited and divided into the PD-EDS group (n = 21) and PD-NEDS group (PD patients without excessive daytime sleepiness, n = 22) according to the Epworth sleepiness scale (ESS) scores. Patients in both groups received resting-state functional magnetic resonance imaging (rs-fMRI). The differences in fractional amplitude of low-frequency fluctuation (fALFF) between the two groups, correlations between fALFF and ESS, and functional connection (FC) between the brain regions with different fALFF values and the whole brain were analyzed. Results PD-EDS patients exhibited a decreased fALFF in the Cingulum-Ant-R, but an increased fALFF in the Putamen-R and Thalamus-L when compared with PD-NEDS patients; an increased functional connectivity between these three seed regions with different fALFF values and the right medial frontal gyrus, bilateral superior temporal gyrus, left insular, and right precuneus was observed (p < 0.05), but a deceased functional connectivity between these three seed regions and the right cerebellum anterior lobe/right brainstem, right middle temporal gyrus and inferior temporal gyrus, right hippocampus/parahippocampal gyrus, right medial cingulate gyrus and bilateral middle occipital gyrus was observed (p < 0.05). The value of fALFF was negatively correlated with the ESS score in the Cingulum-Ant-R, but positively correlated with the ESS score in the Putamen-R and Thalamus-L. Conclusions EDS in PD patients may be associated with changes in brain neuron activity and functional connectivity.
Collapse
Affiliation(s)
- Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- *Correspondence: Haiyan Liao
| |
Collapse
|
4
|
Brooks DJ. Imaging Familial and Sporadic Neurodegenerative Disorders Associated with Parkinsonism. Neurotherapeutics 2021; 18:753-771. [PMID: 33432494 PMCID: PMC8423977 DOI: 10.1007/s13311-020-00994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
In this paper, the structural and functional imaging changes associated with sporadic and genetic Parkinson's disease and atypical Parkinsonian variants are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed, and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression is debated. Imaging changes associated with nonmotor complications of PD are presented. The similarities and differences in imaging findings in Lewy body dementia, Parkinson's disease dementia, and Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- David J Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus N, 8200, Denmark.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
5
|
Ray Chaudhuri K, Poewe W, Brooks D. Motor and Nonmotor Complications of Levodopa: Phenomenology, Risk Factors, and Imaging Features. Mov Disord 2019; 33:909-919. [PMID: 30134055 DOI: 10.1002/mds.27386] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Despite enormous advances in our current understanding of PD since James Parkinson described the "shaking palsy" 200 years ago, l-dopa, in clinical use since the 1960s, remains the gold standard of treatment. Virtually every patient with PD requires varying doses of l-dopa to manage motor and some nonmotor symptoms and retain an acceptable quality of life. However, after a period of treatment with l-dopa, a number of problems emerge; the key ones are motor and nonmotor fluctuations, a range of dyskinesias, and a combination of both. Nonmotor complications can range from behavioral problems to sensory, autonomic, and cognitive issues. Even with a wealth of data, both in animal models and in vivo imaging that address the pathophysiology of l-dopa-related motor and nonmotor complications, the treatment remains challenging and is an unmet need. Although refinement in types of dopamine replacement therapy and delivery systems have improved the management of l-dopa-related complications, the search for the ideal treatment continues. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Institute of Psychiatry, Psychology & Neuroscience at King's College London and Parkinsons Foundation Centre of Excellence at King's College Hospital NHS Foundation Trust
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - David Brooks
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Obeso J, Stamelou M, Goetz C, Poewe W, Lang A, Weintraub D, Burn D, Halliday G, Bezard E, Przedborski S, Lehericy S, Brooks D, Rothwell J, Hallett M, DeLong M, Marras C, Tanner C, Ross G, Langston J, Klein C, Bonifati V, Jankovic J, Lozano A, Deuschl G, Bergman H, Tolosa E, Rodriguez-Violante M, Fahn S, Postuma R, Berg D, Marek K, Standaert D, Surmeier D, Olanow C, Kordower J, Calabresi P, Schapira A, Stoessl A. Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 2017; 32:1264-1310. [PMID: 28887905 PMCID: PMC5685546 DOI: 10.1002/mds.27115] [Citation(s) in RCA: 501] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
This article reviews and summarizes 200 years of Parkinson's disease. It comprises a relevant history of Dr. James Parkinson's himself and what he described accurately and what he missed from today's perspective. Parkinson's disease today is understood as a multietiological condition with uncertain etiopathogenesis. Many advances have occurred regarding pathophysiology and symptomatic treatments, but critically important issues are still pending resolution. Among the latter, the need to modify disease progression is undoubtedly a priority. In sum, this multiple-author article, prepared to commemorate the bicentenary of the shaking palsy, provides a historical state-of-the-art account of what has been achieved, the current situation, and how to progress toward resolving Parkinson's disease. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- J.A. Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain
- Universidad CEU San Pablo, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - M. Stamelou
- Department of Neurology, Philipps University, Marburg, Germany
- Parkinson’s Disease and Movement Disorders Department, HYGEIA Hospital and Attikon Hospital, University of Athens, Athens, Greece
| | - C.G. Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - W. Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - A.E. Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J Safra Program in Parkinson’s Disease, Toronto Western Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - D. Weintraub
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parkinson’s Disease and Mental Illness Research, Education and Clinical Centers (PADRECC and MIRECC), Corporal Michael J. Crescenz Veteran’s Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - D. Burn
- Medical Sciences, Newcastle University, Newcastle, UK
| | - G.M. Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Sydney, Australia
| | - E. Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
- China Academy of Medical Sciences, Institute of Lab Animal Sciences, Beijing, China
| | - S. Przedborski
- Departments of Neurology, Pathology, and Cell Biology, the Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA
- Columbia Translational Neuroscience Initiative, Columbia University, New York, New York, USA
| | - S. Lehericy
- Institut du Cerveau et de la Moelle épinière – ICM, Centre de NeuroImagerie de Recherche – CENIR, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - D.J. Brooks
- Clinical Sciences Department, Newcastle University, Newcastle, UK
- Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark
| | - J.C. Rothwell
- Human Neurophysiology, Sobell Department, UCL Institute of Neurology, London, UK
| | - M. Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - M.R. DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C. Marras
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson’s disease, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - C.M. Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, University of California–San Francisco, San Francisco, California, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - G.W. Ross
- Veterans Affairs Pacific Islands Health Care System, Honolulu, Hawaii, USA
| | | | - C. Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - V. Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J. Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - A.M. Lozano
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - G. Deuschl
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Christian Albrechts University Kiel, Kiel, Germany
| | - H. Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - E. Tolosa
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - M. Rodriguez-Violante
- Movement Disorders Clinic, Clinical Neurodegenerative Research Unit, Mexico City, Mexico
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - S. Fahn
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - R.B. Postuma
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - D. Berg
- Klinikfür Neurologie, UKSH, Campus Kiel, Christian-Albrechts-Universität, Kiel, Germany
| | - K. Marek
- Institute for Neurodegenerative Disorders, New Haven, Connecticut, USA
| | - D.G. Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - D.J. Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C.W. Olanow
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - J.H. Kordower
- Research Center for Brain Repair, Rush University Medical Center, Chicago, Illinois, USA
- Neuroscience Graduate Program, Rush University Medical Center, Chicago, Illinois, USA
| | - P. Calabresi
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - A.H.V. Schapira
- University Department of Clinical Neurosciences, UCL Institute of Neurology, University College London, London, UK
| | - A.J. Stoessl
- Pacific Parkinson’s Research Centre, Division of Neurology & Djavadf Mowafaghian Centre for Brain Health, University of British Columbia, British Columbia, Canada
- Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Kang P, de Bruin GS, Wang LH, Ward BA, Ances BM, Lim MM, Bucelli RC. Sleep Pathology in Creutzfeldt-Jakob Disease. J Clin Sleep Med 2016; 12:1033-9. [PMID: 27250807 DOI: 10.5664/jcsm.5944] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/08/2016] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Associations between sleep and neurodegenerative diseases have become increasingly evident. This study aims to characterize the prevalence and type of sleep pathology in Creutzfeldt-Jakob disease (CJD), a rapidly progressive, fatal neurodegenerative disease. METHODS In this observational cross-sectional cohort study, we performed a retrospective analysis of sleep signs and symptoms in a consecutive group of patients with definite CJD at a tertiary care medical center (n = 28). Polysomnography was performed in 14 patients. RESULTS Although only 5 of 28 patients carried a premorbid sleep diagnosis, signs/symptoms of sleep pathology were present in 25 patients. Eleven reported hypersomnia whereas 13 reported insomnia. Seven had restless legs symptoms and/or periodic limb movements of sleep, and nine reported parasomnias. Of the 14 patients who underwent polysomnography, 1 did not show sleep, 9 (69%) had poorly formed or absent sleep spindles and/or K-complexes, and 10 (77%) had sleep-disordered breathing. Of the 8 patients who experienced rapid eye movement (REM) sleep during the polysomnography, 3 (38%) showed REM sleep without atonia, and 2 patients met criteria for REM sleep behavior disorder. Median total sleep time was 226 (interquartile range [IQR] = 195-282) min. Median sleep efficiency was 58.5% (IQR = 41-65.5 %). Median REM time was 0.35% (IQR = 0-7.125%). Five patients (38%) demonstrated periodic limb movements during polysomnography. One case is presented. CONCLUSIONS Sleep pathology is common in CJD, and screening for sleep pathology is indicated in the evaluation of patients with rapidly progressive dementias. Early identification and treatment of sleep pathology may provide an intervenable target for CJD.
Collapse
Affiliation(s)
- Peter Kang
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Gabriela S de Bruin
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Leo H Wang
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Beth A Ward
- St. Luke's Hospital Sleep Medicine and Research Center, Saint Louis, MO
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Miranda M Lim
- Sleep Disorders Clinic, VA Portland Health Care System; Departments of Medicine, Neurology, and Behavioral Neuroscience, and the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| | - Robert C Bucelli
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|