1
|
Parkinson's Disease Subtyping Using Clinical Features and Biomarkers: Literature Review and Preliminary Study of Subtype Clustering. Diagnostics (Basel) 2022; 12:diagnostics12010112. [PMID: 35054279 PMCID: PMC8774435 DOI: 10.3390/diagnostics12010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The second most common progressive neurodegenerative disorder, Parkinson’s disease (PD), is characterized by a broad spectrum of symptoms that are associated with its progression. Several studies have attempted to classify PD according to its clinical manifestations and establish objective biomarkers for early diagnosis and for predicting the prognosis of the disease. Recent comprehensive research on the classification of PD using clinical phenotypes has included factors such as dominance, severity, and prognosis of motor and non-motor symptoms and biomarkers. Additionally, neuroimaging studies have attempted to reveal the pathological substrate for motor symptoms. Genetic and transcriptomic studies have contributed to our understanding of the underlying molecular pathogenic mechanisms and provided a basis for classifying PD. Moreover, an understanding of the heterogeneity of clinical manifestations in PD is required for a personalized medicine approach. Herein, we discuss the possible subtypes of PD based on clinical features, neuroimaging, and biomarkers for developing personalized medicine for PD. In addition, we conduct a preliminary clustering using gait features for subtyping PD. We believe that subtyping may facilitate the development of therapeutic strategies for PD.
Collapse
|
2
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R, Hansson O, Nordberg A, Jacobs AH. A new perspective for advanced positron emission tomography-based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 2019; 15:1081-1103. [PMID: 31230910 DOI: 10.1016/j.jalz.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Recent studies in neurodegenerative conditions have increasingly highlighted that the same neuropathology can trigger different clinical phenotypes or, vice-versa, that similar phenotypes can be triggered by different neuropathologies. This evidence has called for the adoption of a pathology spectrum-based approach to study neurodegenerative proteinopathies. These conditions share brain deposition of abnormal protein aggregates, leading to aberrant biochemical, metabolic, functional, and structural changes. Positron emission tomography (PET) is a well-recognized and unique tool for the in vivo assessment of brain neuropathology, and novel PET techniques are emerging for the study of specific protein species. Today, key applications of PET range from early research and clinical diagnostic tools to their use in clinical trials for both participants screening and outcome evaluation. This position article critically reviews the role of distinct PET molecular tracers for different neurodegenerative proteinopathies, highlighting their strengths, weaknesses, and opportunities, with special emphasis on methodological challenges and future applications.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK; Neurology Imaging Unit, Imperial College London, London, UK
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.
| | | |
Collapse
|
4
|
Complex networks reveal early MRI markers of Parkinson’s disease. Med Image Anal 2018; 48:12-24. [DOI: 10.1016/j.media.2018.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 11/21/2022]
|
5
|
Yan JW, Zhu JY, Zhou KX, Wang JS, Tan HY, Xu ZY, Chen SB, Lu YT, Cui MC, Zhang L. Neutral merocyanine dyes: for in vivo NIR fluorescence imaging of amyloid-β plaques. Chem Commun (Camb) 2018; 53:9910-9913. [PMID: 28828456 DOI: 10.1039/c7cc05056a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two neutral merocyanine-based near-infrared fluorescent probes were for the first time developed through rational engineering of the classical cationic cyanine scaffold IR-780 for in vivo imaging of amyloid-β plaques. In vivo NIRF imaging revealed that the probe could penetrate the blood-brain barrier and efficiently differentiate the living transgenic and wild-type mice.
Collapse
Affiliation(s)
- Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Castrillo JI, Lista S, Hampel H, Ritchie CW. Systems Biology Methods for Alzheimer’s Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials. Methods Mol Biol 2018; 1750:31-66. [PMID: 29512064 DOI: 10.1007/978-1-4939-7704-8_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan I Castrillo
- Genetadi Biotech S.L. Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain.
| | - Simone Lista
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Abstract
A compelling need in the field of neurodegenerative diseases is the development and validation of biomarkers for early identification and differential diagnosis. The availability of positron emission tomography (PET) neuroimaging tools for the assessment of molecular biology and neuropathology has opened new venues in the diagnostic design and the conduction of new clinical trials. PET techniques, allowing the in vivo assessment of brain function and pathology changes, are increasingly showing great potential in supporting clinical diagnosis also in the early and even preclinical phases of dementia. This review will summarize the most recent evidence on fluorine-18 fluorodeoxyglucose-, amyloid -, tau -, and neuroinflammation - PET tools, highlighting strengths and limitations and possible new perspectives in research and clinical applications. Appropriate use of PET tools is crucial for a prompt diagnosis and target evaluation of new developed drugs aimed at slowing or preventing dementia.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
8
|
Rizzo JR, Hosseini M, Wong EA, Mackey WE, Fung JK, Ahdoot E, Rucker JC, Raghavan P, Landy MS, Hudson TE. The Intersection between Ocular and Manual Motor Control: Eye-Hand Coordination in Acquired Brain Injury. Front Neurol 2017; 8:227. [PMID: 28620341 PMCID: PMC5451505 DOI: 10.3389/fneur.2017.00227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Acute and chronic disease processes that lead to cerebral injury can often be clinically challenging diagnostically, prognostically, and therapeutically. Neurodegenerative processes are one such elusive diagnostic group, given their often diffuse and indolent nature, creating difficulties in pinpointing specific structural abnormalities that relate to functional limitations. A number of studies in recent years have focused on eye-hand coordination (EHC) in the setting of acquired brain injury (ABI), highlighting the important set of interconnected functions of the eye and hand and their relevance in neurological conditions. These experiments, which have concentrated on focal lesion-based models, have significantly improved our understanding of neurophysiology and underscored the sensitivity of biomarkers in acute and chronic neurological disease processes, especially when such biomarkers are combined synergistically. To better understand EHC and its connection with ABI, there is a need to clarify its definition and to delineate its neuroanatomical and computational underpinnings. Successful EHC relies on the complex feedback- and prediction-mediated relationship between the visual, ocular motor, and manual motor systems and takes advantage of finely orchestrated synergies between these systems in both the spatial and temporal domains. Interactions of this type are representative of functional sensorimotor control, and their disruption constitutes one of the most frequent deficits secondary to brain injury. The present review describes the visually mediated planning and control of eye movements, hand movements, and their coordination, with a particular focus on deficits that occur following neurovascular, neurotraumatic, and neurodegenerative conditions. Following this review, we also discuss potential future research directions, highlighting objective EHC as a sensitive biomarker complement within acute and chronic neurological disease processes.
Collapse
Affiliation(s)
- John-Ross Rizzo
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States.,Department of Neurology, New York University Langone Medical Center, New York, NY, United States
| | - Maryam Hosseini
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Eric A Wong
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Wayne E Mackey
- Department of Psychology and Center for Neural Science, New York University, New York, NY, United States
| | - James K Fung
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Edmond Ahdoot
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Janet C Rucker
- Department of Neurology, New York University Langone Medical Center, New York, NY, United States.,Department of Ophthalmology, New York University Langone Medical Center, New York, NY, United States
| | - Preeti Raghavan
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Michael S Landy
- Department of Psychology and Center for Neural Science, New York University, New York, NY, United States
| | - Todd E Hudson
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States.,Department of Neurology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|