1
|
Effects of Berberine on Liver Cancer. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Liver cancer, otherwise known as hepatocellular carcinoma, is a chronic disease condition with an excessive deposition and growth of malignant cells in the body. The high incidence and prevalence rates of liver cancer continue to be problems, as well as its poor prognosis and therapeutic limitations involving severe drug adverse reactions linked to the use of synthetic chemotherapeutic compounds. Continuous experimental studies, as well as utilization of pure herbal-based compounds, are essential towards finding more potent cures for liver cancer. Natural bioactive compounds, particularly alkaloids (eg, berberine), have been shown to be highly beneficial in the treatment of various diseases. Berberine (BBR), an isoquinoline alkaloid, is obtained from stem, bark, roots, rhizomes, and leaves of several medicinal plants, including Berberis species. It is commonly synthesized from the benzyltetrahydroisoquinoline system with the incorporation of an additional carbon atom as a bridge. The multiple attributes of BBR involving effective inhibitory and cytotoxic actions against the proliferation of cancer cells have been demonstrated. The use of BBR in experimental studies (in vivo and in vitro) for over a decade for liver cancer treatment has proven to be highly effective, safe, and potent. Until now, the poor solubility of BBR remains one of the contributing factors leading to its minimal clinical bioavailability. Therefore, BBR could serve as a prospective drug candidate in the future towards drug formulation for liver cancer treatment. The relevant information regarding this review was obtained electronically through the use of databases such as PubMed, Google Scholar, Springer, Hindawi, Embase, Web of Science, and China National Knowledge Infrastructure. All the aforementioned databases were searched from 1981 to 2020. This literature represents an update of previous review papers discussing the various positive pharmacological and mechanistic effects (oxidative stress regulation, inflammation reduction, apoptosis activation, overcoming drug resistance, and metastasis inhibition) of BBR for liver cancer treatment, which would be of great significance to drug development and clinical research.
Collapse
|
2
|
Boscolo G, Jirillo A, Da Pian P. Complete Remission of Poorly Differentiated Squamous Liver Carcinoma after Systemic Chemotherapy and Surgery a Case Report. TUMORI JOURNAL 2019; 91:71-2. [PMID: 15850008 DOI: 10.1177/030089160509100113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report the case of a 64-year-old male patient diagnosed as having inoperable poorly differentiated liver carcinoma that could be completely resected after systemic chemotherapy with cisplatin and 5-fluorouracil.
Collapse
Affiliation(s)
- Giorgia Boscolo
- Division of Medical Oncology, Azienda Ospedaliera, Padua, Italy
| | | | | |
Collapse
|
3
|
Regulation of Tumor Progression by Programmed Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537471. [PMID: 29636841 PMCID: PMC5831895 DOI: 10.1155/2018/3537471] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.
Collapse
|
4
|
Choi SH, Park JY. Regulation of the hypoxic tumor environment in hepatocellular carcinoma using RNA interference. Cancer Cell Int 2017; 17:3. [PMID: 28053598 PMCID: PMC5209894 DOI: 10.1186/s12935-016-0374-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
Objectives Hypoxia is the condition where tumor cells have been deprived of oxygen and has been shown to have a role of tumor development in the hepatocellular carcinoma (HCC). Methods Using PubMed online database and Google scholar web site, the terms “angiogenesis”, “apoptosis”, “RNA interference” and/or “hepatocellular carcinoma (HCC)” were searched and analyzed. Results The hypoxia inducible factors (HIFs) are transcriptional regulators that affect a homeostatic response to oxidative stress and have been identified as a key transcription activator of angiogenesis, survival, and metabolism. Cytokines, such as IL-8, also controlled endothelia cells survival and angiogenesis. IL-8 was also overexpressed under hypoxia and induced tumor angiogenesis and growth. Conclusion Therefore, regulation of HIFs and IL-8 controlled the tumor microenvironment in terms of tumor angiogenesis and apoptosis. The review summarizes the results of regulation of the hypoxic tumor environment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Division of Bioconvergence Analysis, Drug and Disease Target Group, Korea Basic Science Institute, Daejeon, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Jeon YK, Yoo DR, Jang YH, Jang SY, Nam MJ. Sulforaphane induces apoptosis in human hepatic cancer cells through inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase4, mediated by hypoxia inducible factor-1-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1340-8. [PMID: 21640852 DOI: 10.1016/j.bbapap.2011.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 12/23/2022]
Abstract
The anti-cancer activity of sulforaphane (SFN) has recently been investigated in several cancer cell lines, including human hepatic cancers. However, the mechanism of SFN-induced cell death in human hepatic cancer cells is still not well understood. The aim of the present work is to explore the possible mechanisms of SFN-induced apoptosis in hepatocellular carcinoma cells using proteomic analysis. A two-dimensional electrophoresis (2-DE)-based-proteomic analysis was employed for identification of possible target-related proteins of SFN-induced apoptosis. Among eleven proteins identified as regulated, we focused on the down-regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase4 (PFKFB4) protein, which has been known as a key modulator of glycolysis. We also showed that SFN down-regulated the expression of the transcriptional factor, hypoxia inducible factor-1α (HIF-1α), which strongly regulates PFKFB4 expression. In order to obtain a broad understanding of the correlation of HIF-1α and SFN, we observed the inhibition of the activity of mitogen-activated protein kinases, regulators of HIF-1α activity. Our findings suggest that SFN is a potent inducer of apoptosis in hepatocellular carcinoma cells via PFKFB4-inhibition pathways. HIF-1 pathway inhibition may be mediated by the inhibition of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Young Keul Jeon
- Department of Biological Science, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | | | | | | | | |
Collapse
|
6
|
Yuan F, Zhou W, Zhang J, Zhang Z, Zou C, Huang L, Zhang Y, Dai Z. Anticancer drugs are synergistic with freezing in induction of apoptosis in HCC cells. Cryobiology 2008; 57:60-5. [PMID: 18586021 DOI: 10.1016/j.cryobiol.2008.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 06/01/2008] [Accepted: 06/04/2008] [Indexed: 10/22/2022]
Abstract
Cryotherapy has been shown to be an important therapeutic alternative to surgery in the treatment of hepatocellular carcinoma (HCC). Here, the influence of cryo-chemotherapy on HCC was examined in vitro using the human HCC cell line Bel-7402, a drug-resistant HCC cell line originating from Bel-7402 cells (Bel-7402/R), as well as two control cell lines, the HCC cell line SMMC-7721 and a colorectal tumor cell line HIC-251. Cells were treated with either exposure to different freezing temperatures (ranging from -15 to -80 degrees C for 20 min), exposure to sub-lethal concentrations of anticancer chemotherapy drugs or a combination of cryotherapy and chemotherapy. Cell viability and apoptosis under each condition were investigated. We found that the combined treatment resulted in increases in both cell death and apoptosis compared to either treatment alone. The increased level of apoptosis observed in Bel-7402 cells after cryo-chemotherapy was inhibited in the presence of caspase inhibitors. Furthermore, Bax expression was increased 2- to 3-fold in cells exposed to the combination treatment compared with cells treated by freezing or drugs alone. In contrast, Bcl-2 levels remained constant. Although Bel-7402/R cells originated from the Bel-7402 cell line, they were more sensitive to the freezing procedure than the parental cell line. The level of Bax expression in Bel-7402/R cells was also higher than that observed in the parental cell line. In addition, we found that Bel-7402/R cells had lower levels of survivin mRNA than the parental Bel-7402 cells, in both untreated and treated cells. In conclusion, our data show that in HCC cells, apoptosis induced by cryotherapy can be synergistically enhanced using anticancer drugs.
Collapse
Affiliation(s)
- FangJun Yuan
- Institute of Liver Surgery, DongFeng Hospital, YunYang Medical College, 10# Daling Road, Shiyan, Hubei 442008, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bu P, Wan YJY. Fenretinide-induced apoptosis of Huh-7 hepatocellular carcinoma is retinoic acid receptor beta dependent. BMC Cancer 2007; 7:236. [PMID: 18166136 PMCID: PMC2249606 DOI: 10.1186/1471-2407-7-236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/31/2007] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Retinoids are used to treat several types of cancer; however, their effects on liver cancer have not been fully characterized. To investigate the therapeutic potential of retinoids on hepatocellular carcinoma (HCC), the present study evaluates the apoptotic effect of a panel of natural and synthetic retinoids in three human HCC cell lines as well as explores the underlying mechanisms. METHODS Apoptosis was determined by caspase-3 cleavage using western blot, DNA double-strand breaks using TUNEL assay, and phosphatidylserine translocation using flow cytometry analysis. Gene expression of nuclear receptors was assessed by real-time PCR. Transactivation assay and chromatin immunoprecipitation (ChIP) were conducted to evaluate the activation of RXRalpha/RARbeta pathway by fenretinide. Knockdown of RARbeta mRNA expression was achieved by siRNA transfection. RESULTS Our data revealed that fenretinide effectively induces apoptosis in Huh-7 and Hep3B cells. Gene expression analysis of nuclear receptors revealed that the basal and inducibility of retinoic acid receptor beta (RARbeta) expression positively correlate with the susceptibility of HCC cells to fenretinide treatment. Furthermore, fenretinide transactivates the RXRalpha/RARbeta-mediated pathway and directly increases the transcriptional activity of RARbeta. Knockdown of RARbeta mRNA expression significantly impairs fenretinide-induced apoptosis in Huh-7 cells. CONCLUSION Our findings reveal that endogenous expression of retinoids receptor RARbeta gene determines the susceptibility of HCC cells to fenretinide-induced apoptosis. Our results also demonstrate fenretinide directly activates RARbeta and induces apoptosis in Huh-7 cells in a RARbeta-dependent manner. These findings suggest a novel role of RARbeta as a tumor suppressor by mediating the signals of certain chemotherapeutic agents.
Collapse
Affiliation(s)
- Pengli Bu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | |
Collapse
|
8
|
Yin JK, Liang YM, He XL, Lu JG, Zhang L, Bao GQ, Ma QJ. Fusion protein containing SH3 domain of c-Abl induces hepatocarcinoma cells to apoptosis. Hepatol Res 2007; 37:454-63. [PMID: 17539817 DOI: 10.1111/j.1872-034x.2007.00068.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Through a preliminary test on a novel protein containing an HIV1-TAT domain and a SH3 domain of oncoprotein P210(BCR-ABL) (we named it after PTD-BCR/ABL SH3), we found that this protein shows inhibition activity of hepatocarcinoma cell HepG-2. The purpose of the present study is to explore the biological behavior of PTD-BCR/ABL SH3 fusion protein in hepatocarcinoma cells in vitro and in vivo. METHODS HepG-2 cells were cocultured with the fusion protein for the indicated time and studied in vitro by immunocytochemistry staining to demonstrate the localization of the protein, light and electron microscope observation in morphology research, MTT assay to draw a growth curve and to analyze inhibition ratio, DNA ladder and TUNEL staining to study apoptosis. Nude mice bearing HepG-2 tumors were used to test the antitumor activity of the fusion protein. RESULTS PTD-BCR/ABL SH3 fusion protein successfully entered into HepG-2 cells and localized in the nucleus. The protein had shown high cytotoxity through inducing HepG-2 cells to apoptosis, and in vivo. The growth speed of tumors in the treatment group was distinctly slower than those in the control group, and the survival time of mice in the treatment group was longer than those in the control group. The growth of the tumors had been inhibited in the treatment group, while other tissues, such as heart, liver, lung and kidney displayed normal morphology. CONCLUSION PTD-BCR/ABL SH3 fusion protein displays significant inhibitory activity of inducing hepatocarcinoma HepG-2 cells to apoptosis in vitro. It also showed therapeutic effects in vivo.
Collapse
Affiliation(s)
- Ji Kai Yin
- Department of General Surgery, Tangdu Hospital of Fourth Miliatry Medical University, Xi'an City, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Du B, Qian M, Zhou Z, Wang P, Wang L, Zhang X, Wu M, Zhang P, Mei B. In vitro panning of a targeting peptide to hepatocarcinoma from a phage display peptide library. Biochem Biophys Res Commun 2006; 342:956-62. [PMID: 16598852 DOI: 10.1016/j.bbrc.2006.02.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phage display technology has been used as a powerful tool in the discovery of ligands specific to receptor(s) on the surface of a cancer cell and could also impact clinical issues including functional diagnosis and cell-specific drug delivery. After three rounds of in vitro panning and two rounds of reverse absorption, a group of phages capable of addressing BEL-7402 enormously were obtained for further analysis. Through a cell-based ELISA, immunofluorescence, FACS, and in vivo binding study, WP05 (sequence TACHQHVRMVRP) was demonstrated to be the most effective peptide in targeting four kinds of liver cancer cell lines (BEL-7402, BEL-7404, SMMC-7721, and HepG2), but not the normal liver cell line HL-7702. In conclusion, the peptide WP05 which was screened by in vitro phage display technology was proved to be a targeting peptide to several common hepatocellular carcinoma cell lines.
Collapse
Affiliation(s)
- Bing Du
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Varghese L, Agarwal C, Tyagi A, Singh RP, Agarwal R. Silibinin efficacy against human hepatocellular carcinoma. Clin Cancer Res 2005; 11:8441-8. [PMID: 16322307 DOI: 10.1158/1078-0432.ccr-05-1646] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common recurrent malignancies, for which, currently, there is no effective therapy. Considering the antihepatotoxic activity of silibinin, a widely used drug and supplement for various liver disorders, together with its strong preventive and anticancer efficacy against various epithelial cancers, we investigated the efficacy of silibin against human HCC cells. EXPERIMENTAL DESIGN Silibinin effects were examined on growth, cytotoxicity, apoptosis, and cell cycle progression in two different HCC cell lines, HepG2 (hepatitis B virus negative; p53 intact) and Hep3B (hepatitis B virus positive; p53 mutated). At molecular level, cell cycle effects of silibinin were assessed by immunoblotting and in-bead kinase assays. RESULTS Silibinin strongly inhibited growth of both HepG2 and Hep3B cells with a relatively stronger cytotoxicity in Hep3B cells, which was associated with apoptosis induction. Silibinin also caused G1 arrest in HepG2 and both G1 and G2-M arrests in Hep3B cells. Mechanistic studies revealed that silibinin induces Kip1/p27 but decreases cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase (CDK)-2, and CDK4 levels in both cell lines. In Hep3B cells, silibinin also reduced the protein levels of G2-M regulators. Furthermore, silibinin strongly inhibited CDK2, CDK4, and CDC2 kinase activity in these HCC cells. CONCLUSION Together, these results for the first time identify the biological efficacy of silibinin against HCC cells, suggesting the importance of conducting further investigations in preclinical HCC models, especially on in vivo efficacy, to support the clinical usefulness of silibinin against hepatocellular carcinoma in addition to its known clinical efficacy as an antihepatotoxic agent.
Collapse
Affiliation(s)
- Leyon Varghese
- Department of Pharmaceutical Sciences, School of Pharmacy and University of Colorado Cancer Center, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
11
|
Brace CL, Laeseke PF, van der Weide DW, Lee FT. Microwave Ablation With a Triaxial Antenna: Results in ex vivo Bovine Liver. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2005; 53:215-220. [PMID: 18079981 PMCID: PMC2134893 DOI: 10.1109/tmtt.2004.839308] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We apply a new triaxial antenna for microwave ablation procedures to an ex vivo bovine liver. The antenna consists of a coaxial monopole inserted through a biopsy needle positioned one quarter-wavelength from the antenna base. The insertion needle creates a triaxial structure, which enhances return loss more than 10 dB, maximizing energy transfer to the tissue while minimizing feed cable heating and invasiveness. Numerical electromagnetic and thermal simulations are used to optimize the antenna design and predict heating patterns. Numerical and ex vivo experimental results show that the lesion size depends strongly on ablation time and average input power, but not on peak power. Pulsing algorithms are also explored. We were able to measure a 3.8-cm lesion using 50 W for 7 min, which we believe to be the largest lesion reported thus far using a 17-gauge insertion needle.
Collapse
Affiliation(s)
- Christopher L. Brace
- Electrical and Computer Engineering Department, University of Wisconsin–Madison, Madison, WI 53706 USA (e-mail: )
| | - Paul F. Laeseke
- Radiology Department, University of Wisconsin–Madison, Madison, WI 53706 USA (e-mail: )
| | - Daniel W. van der Weide
- Electrical and Computer Engineering Department, University of Wisconsin–Madison, Madison, WI 53706 USA (e-mail: )
| | - Fred T. Lee
- Radiology Department, University of Wisconsin–Madison, Madison, WI 53706 USA (e-mail: )
| |
Collapse
|