1
|
Muralidharan V, Schamroth J, Youssef A, Celi LA, Daneshjou R. Applied artificial intelligence for global child health: Addressing biases and barriers. PLOS DIGITAL HEALTH 2024; 3:e0000583. [PMID: 39172772 PMCID: PMC11340888 DOI: 10.1371/journal.pdig.0000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Given the potential benefits of artificial intelligence and machine learning (AI/ML) within healthcare, it is critical to consider how these technologies can be deployed in pediatric research and practice. Currently, healthcare AI/ML has not yet adapted to the specific technical considerations related to pediatric data nor adequately addressed the specific vulnerabilities of children and young people (CYP) in relation to AI. While the greatest burden of disease in CYP is firmly concentrated in lower and middle-income countries (LMICs), existing applied pediatric AI/ML efforts are concentrated in a small number of high-income countries (HICs). In LMICs, use-cases remain primarily in the proof-of-concept stage. This narrative review identifies a number of intersecting challenges that pose barriers to effective AI/ML for CYP globally and explores the shifts needed to make progress across multiple domains. Child-specific technical considerations throughout the AI/ML lifecycle have been largely overlooked thus far, yet these can be critical to model effectiveness. Governance concerns are paramount, with suitable national and international frameworks and guidance required to enable the safe and responsible deployment of advanced technologies impacting the care of CYP and using their data. An ambitious vision for child health demands that the potential benefits of AI/Ml are realized universally through greater international collaboration, capacity building, strong oversight, and ultimately diffusing the AI/ML locus of power to empower researchers and clinicians globally. In order that AI/ML systems that do not exacerbate inequalities in pediatric care, teams researching and developing these technologies in LMICs must ensure that AI/ML research is inclusive of the needs and concerns of CYP and their caregivers. A broad, interdisciplinary, and human-centered approach to AI/ML is essential for developing tools for healthcare workers delivering care, such that the creation and deployment of ML is grounded in local systems, cultures, and clinical practice. Decisions to invest in developing and testing pediatric AI/ML in resource-constrained settings must always be part of a broader evaluation of the overall needs of a healthcare system, considering the critical building blocks underpinning effective, sustainable, and cost-efficient healthcare delivery for CYP.
Collapse
Affiliation(s)
- Vijaytha Muralidharan
- Department of Dermatology, Stanford University, Stanford, California, United States of America
| | - Joel Schamroth
- Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Alaa Youssef
- Stanford Center for Artificial Intelligence in Medicine and Imaging, Department of Radiology, Stanford University, Stanford, California, United States of America
| | - Leo A. Celi
- Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Roxana Daneshjou
- Department of Dermatology, Stanford University, Stanford, California, United States of America
- Department of Biomedical Data Science, Stanford University, Stanford, California, United States of America
| |
Collapse
|
2
|
Piazza D, Martorana F, Curaba A, Sambataro D, Valerio MR, Firenze A, Pecorino B, Scollo P, Chiantera V, Scibilia G, Vigneri P, Gebbia V, Scandurra G. The Consistency and Quality of ChatGPT Responses Compared to Clinical Guidelines for Ovarian Cancer: A Delphi Approach. Curr Oncol 2024; 31:2796-2804. [PMID: 38785493 PMCID: PMC11119344 DOI: 10.3390/curroncol31050212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION In recent years, generative Artificial Intelligence models, such as ChatGPT, have increasingly been utilized in healthcare. Despite acknowledging the high potential of AI models in terms of quick access to sources and formulating responses to a clinical question, the results obtained using these models still require validation through comparison with established clinical guidelines. This study compares the responses of the AI model to eight clinical questions with the Italian Association of Medical Oncology (AIOM) guidelines for ovarian cancer. MATERIALS AND METHODS The authors used the Delphi method to evaluate responses from ChatGPT and the AIOM guidelines. An expert panel of healthcare professionals assessed responses based on clarity, consistency, comprehensiveness, usability, and quality using a five-point Likert scale. The GRADE methodology assessed the evidence quality and the recommendations' strength. RESULTS A survey involving 14 physicians revealed that the AIOM guidelines consistently scored higher averages compared to the AI models, with a statistically significant difference. Post hoc tests showed that AIOM guidelines significantly differed from all AI models, with no significant difference among the AI models. CONCLUSIONS While AI models can provide rapid responses, they must match established clinical guidelines regarding clarity, consistency, comprehensiveness, usability, and quality. These findings underscore the importance of relying on expert-developed guidelines in clinical decision-making and highlight potential areas for AI model improvement.
Collapse
Affiliation(s)
- Dario Piazza
- Medical Oncology Unit, Casa di Cura Torina, 90145 Palermo, Italy; (D.P.); (A.C.)
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy;
| | - Annabella Curaba
- Medical Oncology Unit, Casa di Cura Torina, 90145 Palermo, Italy; (D.P.); (A.C.)
| | | | - Maria Rosaria Valerio
- Medical Oncology Unit, Policlinico P. Giaccone, University of Palermo, 90133 Palermo, Italy;
| | - Alberto Firenze
- Occupational Health Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Basilio Pecorino
- Gynecology Unit, Ospedale Cannizzaro, 95126 Catania, Italy; (B.P.); (P.S.)
- Gynecology, Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy
| | - Paolo Scollo
- Gynecology Unit, Ospedale Cannizzaro, 95126 Catania, Italy; (B.P.); (P.S.)
- Gynecology, Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy
| | - Vito Chiantera
- Gynecology, University of Palermo, 90133 Palermo, Italy;
| | | | - Paolo Vigneri
- Medical Oncology, University of Catania, 95124 Catania, Italy;
- Medical Oncology, Istituto Clinico Humanitas, 95045 Catania, Italy
| | - Vittorio Gebbia
- Medical Oncology Unit, Casa di Cura Torina, 90145 Palermo, Italy; (D.P.); (A.C.)
- Medical Oncology, Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy
| | | |
Collapse
|
3
|
Derraz B, Breda G, Kaempf C, Baenke F, Cotte F, Reiche K, Köhl U, Kather JN, Eskenazy D, Gilbert S. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precis Oncol 2024; 8:23. [PMID: 38291217 PMCID: PMC10828509 DOI: 10.1038/s41698-024-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
Until recently the application of artificial intelligence (AI) in precision oncology was confined to activities in drug development and had limited impact on the personalisation of therapy. Now, a number of approaches have been proposed for the personalisation of drug and cell therapies with AI applied to therapy design, planning and delivery at the patient's bedside. Some drug and cell-based therapies are already tuneable to the individual to optimise efficacy, to reduce toxicity, to adapt the dosing regime, to design combination therapy approaches and, preclinically, even to personalise the receptor design of cell therapies. Developments in AI-based healthcare are accelerating through the adoption of foundation models, and generalist medical AI models have been proposed. The application of these approaches in therapy design is already being explored and realistic short-term advances include the application to the personalised design and delivery of drugs and cell therapies. With this pace of development, the limiting step to adoption will likely be the capacity and appropriateness of regulatory frameworks. This article explores emerging concepts and new ideas for the regulation of AI-enabled personalised cancer therapies in the context of existing and in development governance frameworks.
Collapse
Affiliation(s)
- Bouchra Derraz
- ProductLife Group, Paris, France
- Groupe de recherche et d'accueil en droit et économie de la santé (GRADES), Faculty of Pharmacy, University Paris-Saclay, Paris, France
| | | | - Christoph Kaempf
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Franziska Baenke
- Carl Gustav Carus University Hospital Dresden, Dresden University of Technology, Dresden, Germany
| | - Fabienne Cotte
- Department of Emergency Medicine, University Clinic Marburg, Philipps-University, Marburg, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
- Institute of Clinical Immunology, University Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, University Leipzig, Leipzig, Germany
| | - Jakob Nikolas Kather
- Carl Gustav Carus University Hospital Dresden, Dresden University of Technology, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, TUD Dresden University of Technology, Dresden, Germany
| | - Deborah Eskenazy
- Groupe de recherche et d'accueil en droit et économie de la santé (GRADES), Faculty of Pharmacy, University Paris-Saclay, Paris, France
| | - Stephen Gilbert
- Carl Gustav Carus University Hospital Dresden, Dresden University of Technology, Dresden, Germany.
- Else Kröner Fresenius Center for Digital Health, TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|