1
|
Tian S, Song Y, Guo L, Zhao H, Bai M, Miao M. Epigenetic Mechanisms in Osteoporosis: Exploring the Power of m 6A RNA Modification. J Cell Mol Med 2025; 29:e70344. [PMID: 39779466 PMCID: PMC11710941 DOI: 10.1111/jcmm.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning m6A RNA modification. m6A is the most prevalent dynamic and reversible modification in eukaryotes, mediating various metabolic processes of mRNAs, including splicing, structural conversion, translation, translocation and degradation and serves as a crucial component of epigenetic modification. Research has increasingly validated that m6A plays a vital role in the proliferation, differentiation, migration, invasion,and repair of bone marrow mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts, all of which impact the whole process of osteoporosis pathogenesis. Continuous efforts have been made to target m6A regulators and natural products derived from traditional medicine, which exhibit multiple biological activities such as anti-inflammatory and anticancer effects, have emerged as a valuable resources for m6A drug discovery. This paper elaborates on m6A methylation and its regulatory role in osteoporosis, emphasising its implications for diagnosis and treatment, thereby providing theoretical references.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Yagang Song
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Lin Guo
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Hui Zhao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Ming Bai
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Mingsan Miao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| |
Collapse
|
2
|
Yan Q, Liu H, Zhu R, Zhang Z. Contribution of macrophage polarization in bone metabolism: A literature review. Cytokine 2024; 184:156768. [PMID: 39340960 DOI: 10.1016/j.cyto.2024.156768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Macrophage polarization divides macrophages into two main cell subpopulations, classically and alternatively activated macrophages (M1 and M2, respectively). M1 polarization promotes osteoclastogenesis, while M2 polarization promotes osteogenesis. The physiological homeostasis of bone metabolism involves a high dynamic balance between osteoclastic-mediated bone resorption and formation. Reportedly, M1/M2 imbalance causes the onset and persistence of inflammation-related bone diseases. Therefore, understanding the research advances in functions and roles of macrophages in such diseases will provide substantial guidance for improved treatment of bone diseases. In this review, we underscore and summarize the research advances in macrophage polarization, and bone-related diseases, such as rheumatoid arthritis, osteoarthritis, and osteoporosis, over the last 5 years. Our findings showed that targeting macrophages and balancing macrophage polarization can effectively reduce inflammation and decrease bone destruction while promoting bone formation and vascular repair. These results indicate that regulating macrophage and macrophage polarization to restore homeostasis is a prospective approach for curing bone-related diseases.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ruyuan Zhu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
4
|
Safari F, Yeoh WJ, Perret-Gentil S, Klenke F, Dolder S, Hofstetter W, Krebs P. SHIP1 deficiency causes inflammation-dependent retardation in skeletal growth. Life Sci Alliance 2024; 7:e202302297. [PMID: 38388173 PMCID: PMC10883774 DOI: 10.26508/lsa.202302297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammation and skeletal homeostasis are closely intertwined. Inflammatory diseases are associated with local and systemic bone loss, and post-menopausal osteoporosis is linked to low-level chronic inflammation. Phosphoinositide-3-kinase signalling is a pivotal pathway modulating immune responses and controlling skeletal health. Mice deficient in Src homology 2-containing inositol phosphatase 1 (SHIP1), a negative regulator of the phosphoinositide-3-kinase pathway, develop systemic inflammation associated with low body weight, reduced bone mass, and changes in bone microarchitecture. To elucidate the specific role of the immune system in skeletal development, a genetic approach was used to characterise the contribution of SHIP1-controlled systemic inflammation to SHIP1-dependent osteoclastogenesis. Lymphocyte deletion entirely rescued the skeletal phenotype in Rag2 -/- /Il2rg -/- /SHIP1 -/- mice. Rag2 -/- /Il2rg -/- /SHIP1 -/- osteoclasts, however, displayed an intermediate transcriptomic signature between control and Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts while exhibiting aberrant in vitro development and functions similar to Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts. These data establish a cell-intrinsic role for SHIP1 in osteoclasts, with inflammation as the key driver of the skeletal phenotype in SHIP1-deficient mice. Our findings demonstrate the central role of the immune system in steering physiological skeletal development.
Collapse
Affiliation(s)
- Fatemeh Safari
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- AO Research Institute Davos, Davos, Switzerland
| | - Wen Jie Yeoh
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Saskia Perret-Gentil
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Frank Klenke
- Department of Orthopaedic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Silvia Dolder
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Zhu B, Wu J, Li T, Liu S, Guo J, Yu Y, Qiu X, Zhao Y, Peng H, Zhang J, Miao L, Wei H. A Glutathione Peroxidase-Mimicking Nanozyme Precisely Alleviates Reactive Oxygen Species and Promotes Periodontal Bone Regeneration. Adv Healthc Mater 2024; 13:e2302485. [PMID: 37902093 DOI: 10.1002/adhm.202302485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Indexed: 10/31/2023]
Abstract
The use of oxidoreductase nanozymes to regulate reactive oxygen species (ROS) has gradually emerged in periodontology treatments. However, current nanozymes for treating periodontitis eliminate ROS extensively and non-specifically, ignoring the physiological functions of ROS under normal conditions, which may result in uncontrolled side effects. Herein, using the MIL-47(V)-F (MVF) nanozyme, which mimics the function of glutathione peroxidase (GPx), it is proposed that ROS can be properly regulated by specifically eliminating H2 O2 , the most prominent ROS. Through H2 O2 elimination, MVF contributes to limiting inflammation, regulating immune microenvironment, and promoting periodontal regeneration. Moreover, MVF stimulates osteogenic differentiation of periodontal stem cells directly, further promoting regeneration due to the vanadium in MVF. Mechanistically, MVF regulates ROS by activating the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) pathway and promotes osteogenic differentiation directly through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. A promising periodontitis therapy strategy is presented using GPx-mimicking nanozymes through their triple effects of antioxidation, immunomodulation, and bone remodeling regulation, making nanozymes an excellent tool for developing precision medicine.
Collapse
Affiliation(s)
- Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Jiangjiexing Wu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Tong Li
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Songtao Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Junheng Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Xinyi Qiu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Yue Zhao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Haoran Peng
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
6
|
Shi T, Liu T, Kou Y, Rong X, Meng L, Cui Y, Gao R, Hu S, Li M. The Synergistic Effect of Zuogui Pill and Eldecalcitol on Improving Bone Mass and Osteogenesis in Type 2 Diabetic Osteoporosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1414. [PMID: 37629706 PMCID: PMC10456904 DOI: 10.3390/medicina59081414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: The incidence of diabetic osteoporosis, an important complication of diabetes mellitus, is increasing gradually. This study investigated the combined effect of the Zuogui pill (ZGP) and eldecalcitol (ED-71), a novel vitamin D analog, on type 2 diabetic osteoporosis (T2DOP) and explored their action mechanism. Materials and Methods: Blood glucose levels were routinely monitored in db/db mice while inducing T2DOP. We used hematoxylin and eosin staining, Masson staining, micro-computed tomography, and serum biochemical analysis to evaluate changes in the bone mass and blood calcium and phosphate levels of mice. Immunohistochemical staining was performed to assess the osteoblast and osteoclast statuses. The MC3T3-E1 cell line was cultured in vitro under a high glucose concentration and induced to undergo osteogenic differentiation. Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence, ALP, and alizarin red staining were carried out to detect osteogenic differentiation and PI3K-AKT signaling pathway activity. Results: ZGP and ED-71 led to a dramatic decrease in blood glucose levels and an increase in bone mass in the db/db mice. The effect was strongest when both were used together. ZGP combined with ED-71 promoted osteoblast activity and inhibited osteoclast activity in the trabecular bone region. The in vitro results revealed that ZGP and ED-71 synergistically promoted osteogenic differentiation and activated the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 or AKT inhibitor ARQ092 altered the synergistic action of both on osteogenic differentiation. Conclusions: The combined use of ZGP and ED-71 reduced blood glucose levels in diabetic mice and promoted osteogenic differentiation through the PI3K-AKT signaling pathway, resulting in improved bone mass. Our study suggests that the abovementioned combination constitutes an effective treatment for T2DOP.
Collapse
Affiliation(s)
- Tuo Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Ting Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Lingxiao Meng
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Ruihan Gao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| |
Collapse
|
7
|
Li X, Wang ZY, Ren N, Wei ZY, Hu WW, Gu JM, Zhang ZL, Yu XT, Wang C. Identifying therapeutic biomarkers of zoledronic acid by metabolomics. Front Pharmacol 2023; 14:1084453. [PMID: 37180703 PMCID: PMC10166846 DOI: 10.3389/fphar.2023.1084453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Zoledronic acid (ZOL) is a potent antiresorptive agent that increases bone mineral density (BMD) and reduces fracture risk in postmenopausal osteoporosis (PMOP). The anti-osteoporotic effect of ZOL is determined by annual BMD measurement. In most cases, bone turnover markers function as early indicators of therapeutic response, but they fail to reflect long-term effects. We used untargeted metabolomics to characterize time-dependent metabolic shifts in response to ZOL and to screen potential therapeutic markers. In addition, bone marrow RNA-seq was performed to support plasma metabolic profiling. Sixty rats were assigned to sham-operated group (SHAM, n = 21) and ovariectomy group (OVX, n = 39) and received sham operation or bilateral ovariectomy, respectively. After modeling and verification, rats in the OVX group were further divided into normal saline group (NS, n = 15) and ZOL group (ZA, n = 18). Three doses of 100 μg/kg ZOL were administrated to the ZA group every 2 weeks to simulate 3-year ZOL therapy in PMOP. An equal volume of saline was administered to the SHAM and NS groups. Plasma samples were collected at five time points for metabolic profiling. At the end of the study, selected rats were euthanatized for bone marrow RNA-seq. A total number of 163 compound were identified as differential metabolites between the ZA and NS groups, including mevalonate, a critical molecule in target pathway of ZOL. In addition, prolyl hydroxyproline (PHP), leucyl hydroxyproline (LHP), 4-vinylphenol sulfate (4-VPS) were identified as differential metabolites throughout the study. Moreover, 4-VPS negatively correlated with increased vertebral BMD after ZOL administration as time-series analysis revealed. Bone marrow RNA-seq showed that the PI3K-AKT signaling pathway was significantly associated with ZOL-mediated changes in expression (adjusted-p = 0.018). In conclusion, mevalonate, PHP, LHP, and 4-VPS are candidate therapeutic markers of ZOL. The pharmacological effect of ZOL likely occurs through inhibition of the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Yuan Wang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Ren
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhan-Ying Wei
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Hu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Mei Gu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Lin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Wang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Yang X, Mai YX, Wei L, Peng LY, Pang FX, Wang LJ, Li ZP, Zhang JF, Jin AM. MLK3 silence suppressed osteogenic differentiation and delayed bone formation via influencing the bone metabolism and disturbing MAPK signaling. J Orthop Translat 2023; 38:98-105. [PMCID: PMC9619354 DOI: 10.1016/j.jot.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiao Yang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-xin Mai
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lan Wei
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-yang Peng
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng-xiang Pang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-jun Wang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-peng Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rehabilitation, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Corresponding author. Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China. Tel: +86 13724839892.
| | - Jin-fang Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Corresponding author. Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Tel: +86 13802983267.
| | - An-min Jin
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Corresponding author. Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Qi J, Yin J, Ding G. A Connexin-Based Biomarker Model Applicable for Prognosis and Immune Landscape Assessment in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9261339. [PMID: 36276289 PMCID: PMC9581606 DOI: 10.1155/2022/9261339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022]
Abstract
Purpose Gap junction protein (Connexin) family is the basic unit of cellular connection, whose multiple members were recently demonstrated to be associated with tumor progression. However, the expression pattern and prognostic value of connexin in lung adenocarcinoma (LUAD) have not yet been elucidated. Methods Consensus cluster algorithm was first applied to determine a novel molecular subtype in LUAD based on connexin genes. The differentially expressed genes (DEGs) between two clusters were obtained to include in Cox regression analyses for the model construction. To examine the predictive capacity of the signature, survival curves and ROC plots were conducted. We implemented GSEA method to uncover the function effects enriched in the risk model. Moreover, the tumor immune microenvironment in LUAD was depicted by CIBERSORT and ssGSEA methods. Results The integrated LUAD cohort (TCGA-LUAD and GSE68465) were clustered into two subtypes (C1 = 217 and C2 = 296) based on 21 connexins and the clinical outcomes of LUAD cases in the two clusters showed remarkable discrepancy. Next, we collected 222 DEGs among two subclusters to build a prognostic model using stepwise Cox analyses. Our proposed model consisted of six genes that accurately forecast patient outcomes and differentiate patient risk. GSEA indicated that high-risk group was involved in tumor relevant pathways were activated in high-risk group, such as PI3K/AKT signaling, TGF-β pathway, and p53 pathway. Furthermore, LUAD cases with high-risk presented higher infiltration level of M2 macrophage and neutrophil, suggesting high-risk group were more likely to generate an immunosuppressive status. Conclusion Our data identified a novel connexin-based subcluster in LUAD and further created a risk signature which plays a central part in prognosis assessment and clinical potency.
Collapse
Affiliation(s)
- Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yin
- Department of Cardiothoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Zhang Q, Liang J, Zhou Y. Network pharmacology analysis of molecular targets and related mechanisms of Guizhi decoction in treating of menopausal syndrome. Medicine (Baltimore) 2022; 101:e29453. [PMID: 35866834 PMCID: PMC9302318 DOI: 10.1097/md.0000000000029453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Compared with hormone therapy, TCM had the advantages of overall adjustment and less side effects in the treatment of menopausal syndrome. But due to the complex pharmacodynamic composition of Guizhi decoction (GZD), the mechanism of TCM treating diseases was not clear. Network pharmacology could analyze drug action pathways through multi-pathway and multi-target, which provide a new direction for TCM mechanism research. The common targets of GZD and menopausal syndrome (MPS) were obtained by TCMSP and DisGeNET databases. And for the common targets, protein-protein interaction networks were established using the STRING database and analyzed by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. (Our research does not require ethical approval). One hundred forty-six active ingredients with 283 targets were obtained from GZD by network pharmacological analysis. Besides, 230 target genes were found to have interactions with MPS, 52 of which were common targets between MPS and GZD and were predicted to be potential targets for MPS treatment of GZD. GO enrichment analysis revealed that GZD could affect 51 biological processes, 15 cellular components, and 13 molecular functions. Kyoto Encyclopedia of Genes and Genomes enrichment analysis yielded a total of 223. The pathways that are closely related to the pathogenesis of MPS are MAPK, PI3K-Akt. In this study, the relevant targets and mechanisms of GZD in the treatment of MPS were discussed from the perspective of network pharmacological analysis, reflecting the characteristics of multi-component, multi-target and multiple pathways, and it provides a good theoretical basis for the clinical application of GZD.
Collapse
Affiliation(s)
- Qian Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, China
| | - Jingtao Liang
- The First Clinical College of Guangzhou University of Chinese Medicine, China
| | - Ying Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China
- *Correspondence: Ying Zhou, 16 Jichang Road, Baiyun District, Guangzhou City, Guangdong Province, China (e-mail: )
| |
Collapse
|
11
|
Expression of Beta-Catenin, Cadherins and P-Runx2 in Fibro-Osseous Lesions of the Jaw: Tissue Microarray Study. Biomolecules 2022; 12:biom12040587. [PMID: 35454175 PMCID: PMC9024991 DOI: 10.3390/biom12040587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023] Open
Abstract
Fibrous dysplasia (FD) and hyperparathyroidism-jaw tumor syndrome (HPT-JT) are well-characterized benign bone fibro-osseous lesions. The intracellular mechanism leading to excessive deposition of fibrous tissue and alteration of differentiation processes leading to osteomalacia have not yet been fully clarified. Tissue Microarray (TMA)-based immunohistochemical expression of β-catenin, CK-AE1/AE3, Ki-67, cadherins and P-Runx2 were analyzed in archival samples from nine patients affected by FD and HPT-JT and in seven controls, with the aim of elucidating the contribution of these molecules (β-catenin, cadherins and P-Runx2) in the osteoblast differentiation pathway. β-catenin was strongly upregulated in FD, showing a hyper-cellulated pattern, while it was faintly expressed in bone tumors associated with HPT-JT. Furthermore, the loss of expression of OB-cadherin in osteoblast lineage in FD was accompanied by N-cadherin and P-cadherin upregulation (p < 0.05), while E-cadherin showed a minor role in these pathological processes. P-Runx2 showed over-expression in six out of eight cases of FD and stained moderately positive in the rimming lining osteoblasts in HPT-JT syndrome. β-catenin plays a central role in fibrous tissue proliferation and accompanies the lack of differentiation of osteoblast precursors in mature osteoblasts in FD. The study showed that the combined evaluation of the histological characteristics and the histochemical and immunohistochemical profile of key molecules involved in osteoblast differentiation are useful in the diagnosis, classification and therapeutic management of fibrous-osseous lesions.
Collapse
|
12
|
Huang M, Xu S, Liu L, Zhang M, Guo J, Yuan Y, Xu J, Chen X, Zou J. m6A Methylation Regulates Osteoblastic Differentiation and Bone Remodeling. Front Cell Dev Biol 2022; 9:783322. [PMID: 34993198 PMCID: PMC8724434 DOI: 10.3389/fcell.2021.783322] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoporosis is a prevalent bone disease of the aging population, which is characterized by a decrease in bone mass because of the imbalance of bone metabolism. Although the prevention and treatment of osteoporosis have been explored by different researchers, the mechanisms underlying osteoporosis are not clear exactly. N6 methyladenosine (m6A) is a methylated adenosine nucleotide, which functions through its interaction with the proteins called “writers,” “readers” and “erasers.” The epigenetic regulation of m6A has been demonstrated to affect mRNA processing, nuclear export, translation, and splicing. At the cellular level, m6A modification has been known to affect cell proliferation, differentiation, and apoptosis of bone-related cells, such as bone marrow mesenchymal stem cells (BMSC), osteoblasts, and osteoclasts by regulating the expression of ALP, Runx2, Osterix, VEGF, and other related genes. Furthermore, PTH/Pth1r, PI3K‐Akt, Wnt/β‐Catenin, and other signaling pathways, which play important roles in the regulation of bone homeostasis, are also regulated by m6A. Thus, m6A modification may provide a new approach for osteoporosis treatment. The key roles of m6A modification in the regulation of bone health and osteoporosis are reviewed here in this article.
Collapse
Affiliation(s)
- Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Shaozhe Xu
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Miao Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
13
|
He W, Cao X, Kong K, Rong K, Han S, Qin A. Ceritinib (LDK378) prevents bone loss via suppressing Akt and NF-κB-induced osteoclast formation. Front Endocrinol (Lausanne) 2022; 13:939959. [PMID: 36425467 PMCID: PMC9679281 DOI: 10.3389/fendo.2022.939959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Ceritinib is used for the treatment of patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC), who are at the risk of developing bone metastasis. During bone metastasis, tumor cells release factors that induce osteoclast formation, resulting in osteolysis. However, the effect of ceritinib on osteoclast formation remains unclear. METHODS Osteoclastogenesis was induced to assess the effect of ceritinib on osteoclast formation and osteoclast-specific gene expression. Western blotting was used to examine the molecular mechanisms underlying the effect of ceritinib on osteoclast differentiation. An in vivo ovariectomized mouse model was established to validate the effect of ceritinib in suppressing osteoclast formation and preventing bone loss. RESULTS The differentiation of osteoclasts and the expression of osteoclast-specific genes were inhibited upon ceritinib stimulation. Ceritinib suppressed Akt and p65 phosphorylation during the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The administration of ceritinib to ovariectomized mice ameliorated trabecular bone loss by inhibiting osteoclast formation. CONCLUSIONS Ceritinib is beneficial in preventing bone loss by suppressing osteoclastic Akt and nuclear factor κB (NF-κB) signaling.
Collapse
Affiliation(s)
- Wenxin He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre National de la Recherche Scientifique–Laboratoire International Associé (CNRS-LIA) Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Kong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Han
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: An Qin,
| |
Collapse
|
14
|
Lin S, Pandruvada S, Yu H. Inhibition of Sphingosine-1-Phosphate Receptor 2 by JTE013 Promoted Osteogenesis by Increasing Vesicle Trafficking, Wnt/Ca 2+, and BMP/Smad Signaling. Int J Mol Sci 2021; 22:ijms222112060. [PMID: 34769490 PMCID: PMC8584480 DOI: 10.3390/ijms222112060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
Sphingosine-1-phosphate receptor 2 (S1PR2) is a G protein-coupled receptor that regulates various immune responses. Herein, we determine the effects of a S1PR2 antagonist (JTE013) or a S1PR2 shRNA on osteogenesis by culturing murine bone marrow stromal cells (BMSCs) in osteogenic media with JTE013, dimethylsulfoxide (DMSO), a S1PR2 shRNA, or a control shRNA. Treatment with JTE013 or the S1PR2 shRNA increased alkaline phosphatase and alizarin red s staining, and enhanced alkaline phosphatase, RUNX2, osteocalcin, and osterix mRNA levels in BMSCs compared with the controls. Protein analysis revealed that a high dose of JTE013 (4 or 8 μM) increased vesicle trafficking-associated proteins (F-actin, clathrin, Early Endosome Antigen 1 (EEA1), and syntaxin 6) and Wnt/Ca2+ signaling. On the other hand, a low dose of JTE013 (1 to 2 μM) increased BMP/Smad signaling. In contrast, the S1PR2 shRNA reduced vesicle trafficking-associated proteins and attenuated Wnts and BMP/Smad signaling, but enhanced p-CaMKII compared with the control, suggesting that the S1PR2 shRNA influenced osteogenesis via different signaling pathways. Moreover, inhibiting protein trafficking by brefeldin A in BMSCs suppressed Wnts and BMPRs expressions. These data supported that enhanced osteogenesis in JTE013-treated BMSCs is associated with increased vesicle trafficking, which promotes the synthesis and transport of osteogenic protein and matrix vesicles and enhances matrix mineralization.
Collapse
|
15
|
Karkache IY, Damodaran JR, Molstad DHH, Mansky KC, Bradley EW. Myeloid Lineage Ablation of Phlpp1 Regulates M-CSF Signaling and Tempers Bone Resorption in Female Mice. Int J Mol Sci 2021; 22:9702. [PMID: 34575866 PMCID: PMC8468863 DOI: 10.3390/ijms22189702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Prior work demonstrated that Phlpp1 deficiency alters trabecular bone mass and enhances M-CSF responsiveness, but the cell types and requirement of Phlpp1 for this effect were unclear. To understand the function of Phlpp1 within myeloid lineage cells, we crossed Phlpp1 floxed mice with mice harboring LysM-Cre. Micro-computed tomography of the distal femur of 12-week-old mice revealed a 30% increase in bone volume per total volume of Phlpp1 female conditional knockouts, but we did not observe significant changes within male Phlpp1 cKOLysM mice. Bone histomorphmetry of the proximal tibia further revealed that Phlpp1 cKOLysM females exhibited elevated osteoclast numbers, but conversely had reduced levels of serum markers of bone resorption as compared to littermate controls. Osteoblast number and serum markers of bone formation were unchanged. In vitro assays confirmed that Phlpp1 ablation enhanced osteoclast number and area, but limited bone resorption. Additionally, reconstitution with exogenous Phlpp1 suppressed osteoclast numbers. Dose response assays demonstrated that Phlpp1-/- cells are more responsive to M-CSF, but reconstitution with Phlpp1 abrogated this effect. Furthermore, small molecule-mediated Phlpp inhibition enhanced osteoclast numbers and size. Enhanced phosphorylation of Phlpp substrates-including Akt, ERK1/2, and PKCζ-accompanied these observations. In contrast, actin cytoskeleton disruption occurred within Phlpp inhibitor treated osteoclasts. Moreover, Phlpp inhibition reduced resorption of cells cultured on bovine bone slices in vitro. Our results demonstrate that Phlpp1 deficiency within myeloid lineage cells enhances bone mass by limiting bone resorption while leaving osteoclast numbers intact; moreover, we show that Phlpp1 represses osteoclastogenesis and controls responses to M-CSF.
Collapse
Affiliation(s)
- Ismael Y. Karkache
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - Jeyaram R. Damodaran
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - David H. H. Molstad
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - Kim C. Mansky
- Division of Orthodontics, Department of Developmental and Surgical Services, Institute for Virology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Elizabeth W. Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Qu Y, Liu X, Zong S, Sun H, Liu S, Zhao Y. Protocatechualdehyde Inhibits the Osteoclast Differentiation of RAW264.7 and BMM Cells by Regulating NF- κB and MAPK Activity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6108999. [PMID: 34327232 PMCID: PMC8302381 DOI: 10.1155/2021/6108999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Protocatechualdehyde (PCA), an important component of Salvia miltiorrhiza, has many activities, such as anti-inflammatory and antisepsis activities. However, the role of PCA in osteoclasts is not clear. We used RAW264.7 cells (a mouse leukemic monocyte/macrophage cell line) and bone marrow macrophages (BMMs) to probe the role of PCA in osteoclasts and the underlying mechanism. The effects of PCA on cell activity were evaluated with CCK-8 assays. TRAP staining detected mature osteoclasts. Corning Osteo Assay Surface plates were used to examine absorption. The levels of RNA and protein were analyzed, respectively, using RT-PCR and Western blotting. PCA (5 μg/ml) was not toxic to the two cell types but reduced the formation of osteoclasts and bone absorption. Furthermore, PCA restrained the expression of mRNAs encoding proteins associated with osteoclasts and reduced the phosphorylation of proteins in important signaling pathways. The results indicate that PCA inhibits osteoclast differentiation by suppressing NF-κB and MAPK activity.
Collapse
Affiliation(s)
- Yunyun Qu
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Liu
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuai Zong
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Huanxin Sun
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuang Liu
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yueran Zhao
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
17
|
He W, Cao X, Rong K, Chen X, Han S, Qin A. Combination of AZD3463 and DZNep Prevents Bone Metastasis of Breast Cancer by Suppressing Akt Signaling. Front Pharmacol 2021; 12:652071. [PMID: 34122074 PMCID: PMC8193724 DOI: 10.3389/fphar.2021.652071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Osteolysis resulting from osteoclast overactivation is one of the severe complications of breast cancer metastasis to the bone. Previous studies reported that the anti-cancer agent DZNep induces cancer cell apoptosis by activating Akt signaling. However, the effect of DZNep on breast cancer bone metastasis is unknown. We previously found that DZNep enhances osteoclast differentiation by activating Akt. Therefore, we explored the use of the anti-cancer agent AZD3463 (an Akt inhibitor) along with DZNep, as AZD3463 can act as an anti-cancer agent and can also potentially ameliorate bone erosion. We evaluated osteoclast and breast cancer cell phenotypes and Akt signaling in vitro by treating cells with DZNep and AZD3463. Furthermore, we developed a breast cancer bone metastasis animal model in mouse tibiae to further determine their combined effects in vivo. Treatment of osteoclast precursor cells with DZNep alone increased osteoclast differentiation, bone resorption, and expression of osteoclast-specific genes. These effects were ameliorated by AZD3463. The combination of DZNep and AZD3463 inhibited breast cancer cell proliferation, colony formation, migration, and invasion. Finally, intraperitoneal injection of DZNep and AZD3463 ameliorated tumor progression and protected against bone loss. In summary, DZNep combined with AZD3463 prevented skeletal complications and inhibited breast cancer progression by suppressing Akt signaling.
Collapse
Affiliation(s)
- Wenxin He
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Han
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Hu L, Liu J, Xue H, Panayi AC, Xie X, Lin Z, Wang T, Xiong Y, Hu Y, Yan C, Chen L, Abududilibaier A, Zhou W, Mi B, Liu G. miRNA-92a-3p regulates osteoblast differentiation in patients with concomitant limb fractures and TBI via IBSP/PI3K-AKT inhibition. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1345-1359. [PMID: 33717654 PMCID: PMC7920808 DOI: 10.1016/j.omtn.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Patients who sustain concomitant fractures and traumatic brain injury (TBI) are known to have significantly quicker fracture-healing rates than patients with isolated fractures. The mechanisms underlying this phenomenon have yet to be identified. In the present study, we found that the upregulation of microRNA-92a-3p (miRNA-92a-3p) induced by TBI correlated with a decrease in integrin binding sialoprotein (IBSP) expression in callus formation. In vitro, overexpressing miRNA-92a-3p inhibited IBSP expression and accelerated osteoblast differentiation, whereas silencing of miRNA-92a-3p inhibited osteoblast activity. A decrease in IBSP facilitated osteoblast differentiation via the Phosphatidylinositol 3-kinase/threonine kinase 1 (PI3K/AKT) signaling pathway. Through luciferase assays, we found evidence that IBSP is a miRNA-92a-3p target gene that negatively regulates osteoblast differentiation. Moreover, the present study confirmed that pre-injection of agomiR-92a-3p leads to increased bone formation. Collectively, these results indicate that miRNA-92a-3p overexpression may be a key factor underlying the improved fracture healing observed in TBI patients. Upregulation of miRNA-92a-3p may therefore be a promising therapeutic strategy for promoting fracture healing and preventing nonunion.
Collapse
Affiliation(s)
- Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston 02215, USA
| | - Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Tiantian Wang
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Chengcheng Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Abudula Abududilibaier
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
19
|
Wei X, Qi B, Ma R, Zhang Y, Liu N, Fang S, Zhu Y, Xie Y, Dai J, Zhu L. Quantitative Proteomics Revealed the Pharmacodynamic Network of Bugu Shengsui Decoction Promoting Osteoblast Proliferation. Front Endocrinol (Lausanne) 2021; 12:833474. [PMID: 35145485 PMCID: PMC8822948 DOI: 10.3389/fendo.2021.833474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE With high morbidity and disability, osteoporosis is a worldwide bone metabolism disease, regulated by complex pathological processes. Insufficient osteogenesis is greatly essential to osteoporosis. Traditional Chinese Medicine, a complex natural herbal medicine system, has increasingly attracted attention all over the world. Bugu Shengsui Decoction, a compound formula for osteoporosis, has significant clinical effects in the treatment of osteoporosis. Yet the detailed mechanisms are unclear. Thus, we investigated the effects and mechanism of Bugu Shengsui Decoction on osteoporotic rats and osteoblasts in vitro. METHODS In this study, we evaluated the effect of Bugu Shengsui Decoction in an animal model of orchiectomy. Multi-pharmacology indexes revealed that Bugu Shengsui Decoction obviously improved bone metabolism, bone mineral density, bone morphology, and biomechanics in the castrated rats. Then, serum pharmacology was employed to unveil that Bugu Shengsui Decoction promoted the proliferation and differentiation of osteoblasts. Moreover, quantitative proteomics combined with RNA interference assay was used to analyze and verify the pathway and key targets in pro-proliferation of MC3T3-E1 cells. RESULTS Bugu Shengsui Decoction obviously improved the worse parameters of bone metabolism, bone mineral density, bone morphology, and biomechanics in a castrated rat model. In vitro, Bugu Shengsui Decoction exerted proliferation- and differentiation-promoting effects of osteoblasts induced by serum starvation. Moreover, quantitative proteomics analysis combined with RNA interfere assay illustrated that Bugu Shengsui Decoction promoted osteogenesis via the PI3K-AKT pathway. CONCLUSION Summarily, our discoveries certify that Bugu Shengsui Decoction is an effective treatment for osteoporosis via PI3K-AKT. This study is not only a beneficial attempt to explore the detailed mechanism of Traditional Chinese formula but also will provide inspiration for the treatment strategy of osteoporosis.
Collapse
Affiliation(s)
- Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruyun Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Fang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanning Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| |
Collapse
|
20
|
Shang Q, Shen G, Chen G, Zhang Z, Yu X, Zhao W, Zhang P, Chen H, Tang K, Yu F, Tang J, Liang D, Jiang X, Ren H. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol 2020; 236:4231-4243. [PMID: 33241566 DOI: 10.1002/jcp.30179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA-128 (miR-128) is associated with cell proliferation, differentiation, migration, apoptosis, and survival. Genetic analysis studies have demonstrated that miR-128 participates in bone metabolism, which involves bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, and adipocytes. miR-128 also participates in regeneration of skeletal muscles by targeting myoblast-associated proteins. The deregulation of miR-128 could lead to a series of musculoskeletal diseases. In this review, we discuss recent findings of miR-128 in relation to bone metabolism and muscle regeneration to determine its potential therapeutic effects in musculoskeletal diseases, and to propose directions for future research in this significant field.
Collapse
Affiliation(s)
- Qi Shang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Tang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Li Z, Oh H, Cung M, Marquez SJ, Sun J, Hammad H, Janssens S, Pouliot P, Lambrecht BN, Yang YS, Shim JH, Greenblatt MB. TAOK3 is a MAP3K contributing to osteoblast differentiation and skeletal mineralization. Biochem Biophys Res Commun 2020; 531:497-502. [PMID: 32807497 PMCID: PMC7494564 DOI: 10.1016/j.bbrc.2020.07.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/12/2020] [Indexed: 11/18/2022]
Abstract
Current anabolic drugs to treat osteoporosis and other disorders of low bone mass all have important limitations in terms of toxicity, contraindications, or poor efficacy in certain contexts. Addressing these limitations will require a better understanding of the molecular pathways, such as the mitogen activated protein kinase (MAPK) pathways, that govern osteoblast differentiation and, thereby, skeletal mineralization. Whereas MAP3Ks functioning in the extracellular signal-regulated kinases (ERK) and p38 pathways have been identified in osteoblasts, MAP3Ks mediating proximal activation of the c-Jun N-terminal kinase (JNK) pathway have yet to be identified. Here, we demonstrate that thousand-and-one kinase 3 (TAOK3, MAP3K18) functions as an upstream activator of the JNK pathway in osteoblasts both in vitro and in vivo. Taok3-deficient osteoblasts displayed defective JNK pathway activation and a marked decrease in osteoblast differentiation markers and defective mineralization, which was also confirmed using TAOK3 deficient osteoblasts derived from human MSCs. Additionally, reduced expression of Taok3 in a murine model resulted in osteopenia that phenocopies aspects of the Jnk1-associated skeletal phenotype such as occipital hypomineralization. Thus, in vitro and in vivo evidence supports TAOK3 as a proximal activator of the JNK pathway in osteoblasts that plays a critical role in skeletal mineralization.
Collapse
Affiliation(s)
- Zan Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Sports Medicine & Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Hwanhee Oh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michelle Cung
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sofia Jenia Marquez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hamida Hammad
- VIB Inflammation Research Center, Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sophie Janssens
- VIB Inflammation Research Center, Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Philippe Pouliot
- VIB Inflammation Research Center, Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- VIB Inflammation Research Center, Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yeon-Suk Yang
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA01605, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA01605, USA.
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Wang Y, Yang K, Li G, Liu R, Liu J, Li J, Tang M, Zhao M, Song J, Wen X. p75NTR -/- mice exhibit an alveolar bone loss phenotype and inhibited PI3K/Akt/β-catenin pathway. Cell Prolif 2020; 53:e12800. [PMID: 32215984 PMCID: PMC7162804 DOI: 10.1111/cpr.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the role of p75 neurotrophin receptor (p75NTR) in regulating the mouse alveolar bone development and the mineralization potential of murine ectomesenchymal stem cells (EMSCs). Moreover, we tried to explore the underlying mechanisms associated with the PI3K/Akt/β-catenin pathway. MATERIALS AND METHODS p75NTR knockout (p75NTR-/- ) mice and wild-type (WT) littermates were used. E12.5d p75NTR-/- and WT EMSCs were isolated in the same pregnant p75NTR-/+ mice from embryonic maxillofacial processes separately. Mouse alveolar bone mass was evaluated using micro-CT. Differential osteogenic differentiation pathways between p75NTR-/- and WT EMSCs were analysed by RNA-sequencing. The PI3K inhibitor LY294002 and PI3K agonist 740Y-P were used to regulate the PI3K/Akt pathway in EMSCs. p75NTR overexpression lentiviruses, p75NTR knock-down lentiviruses and recombined mouse NGF were used to transfect cells. RESULTS The alveolar bone mass was found reduced in the p75NTR knockout mouse comparing to the WT mouse. During mineralization induction, p75NTR-/- EMSCs displayed decreased osteogenic capacity and downregulated PI3K/Akt/β-catenin signalling. The PI3K/Akt/β-catenin pathway positively regulates the potential of differential mineralization in EMSCs. The promotive effect of p75NTR overexpression can be attenuated by LY294002, while the inhibitory effect of p75NTR knock-down on Runx2 and Col1 expression can be reversed by 740Y-P. CONCLUSION Deletion of p75NTR reduced alveolar bone mass in mice. P75NTR positively regulated the osteogenic differentiation of EMSCs via enhancing the PI3K/Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Yingying Wang
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Kun Yang
- Department of PeriodontologyStomatological HospitalZunyi Medical UniversityZunyiChina
| | - Gang Li
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Rui Liu
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Junyu Liu
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Jun Li
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Mengying Tang
- Hospital of StomatologySouthwest Medical UniversityLuzhouChina
| | - Manzhu Zhao
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Xiujie Wen
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- Hospital of StomatologySouthwest Medical UniversityLuzhouChina
| |
Collapse
|
23
|
Arfat Y, Rani A, Jingping W, Hocart CH. Calcium homeostasis during hibernation and in mechanical environments disrupting calcium homeostasis. J Comp Physiol B 2020; 190:1-16. [DOI: 10.1007/s00360-019-01255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
24
|
Qamar H, Waqas M, Li A, Iqbal M, Mehmood K, Li J. Plastrum Testudinis Extract Mitigates Thiram Toxicity in Broilers via Regulating PI3K/AKT Signaling. Biomolecules 2019; 9:biom9120784. [PMID: 31779199 PMCID: PMC6995622 DOI: 10.3390/biom9120784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Tibial dyschondroplasia (TD) negatively affects broilers all over the world, in which the accretion of the growth plate (GP) develops into tibial proximal metaphysis. Plastrum testudinis extract (PTE) is renowned as a powerful antioxidant, anti-inflammatory, and bone healing agent. The current study was conducted to evaluate the efficacy of PTE for the treatment of thiram-induced TD chickens. Broilers (day old; n = 300) were raised for 3 days with normal feed. On the 4th day, three groups (n = 100 each) were sorted, namely, the control (normal diet), TD, and PTE groups (normal diet+ thiram 50 mg/kg). On the 7th day, thiram was stopped in the TD and PTE group, and the PTE group received a normal diet and PTE (30 mg/kg/day). Plastrum testudinis extract significantly restored (p < 0.05) the liver antioxidant enzymes, inflammatory cytokines, serum biochemicals, GP width, and tibia weight as compared to the TD group. The PTE administration significantly increased (p < 0.05) growth performance, vascularization, AKT (serine/threonine-protein kinase), and PI3K expressions and the number of hepatocytes and chondrocytes with intact nuclei were enhanced. In conclusion, PTE has the potential to heal TD lesions and act as an antioxidant and anti-inflammatory drug in chickens exposed to thiram via the upregulation of AKT and PI3K expressions.
Collapse
Affiliation(s)
- Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, China
- Correspondence: ; Tel.: +86-027-87286251
| |
Collapse
|
25
|
Robinson LJ, Blair HC, Barnett JB, Soboloff J. The roles of Orai and Stim in bone health and disease. Cell Calcium 2019; 81:51-58. [PMID: 31201955 PMCID: PMC7181067 DOI: 10.1016/j.ceca.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023]
Abstract
Orai and Stim proteins are the mediators of calcium release-activated calcium signaling and are important in the regulation of bone homeostasis and disease. This includes separate regulatory systems controlling mesenchymal stem cell differentiation to form osteoblasts, which make bone, and differentiation and regulation of osteoclasts, which resorb bone. These systems will be described separately, and their integration and relation to other systems, including Orai and Stim in teeth, will be briefly discussed at the end of this review.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, Morgantown WV 26505, United States; Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown WV 26505, United States.
| | - Harry C Blair
- Veteran's Affairs Medical Center, Pittsburgh PA 15206, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - John B Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown WV 26505, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology and the Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|
26
|
Protective Effects of Fermented Oyster Extract against RANKL-Induced Osteoclastogenesis through Scavenging ROS Generation in RAW 264.7 Cells. Int J Mol Sci 2019; 20:ijms20061439. [PMID: 30901917 PMCID: PMC6471417 DOI: 10.3390/ijms20061439] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Excessive bone resorption by osteoclasts causes bone loss-related diseases and reactive oxygen species (ROS) act as second messengers in intercellular signaling pathways during osteoclast differentiation. In this study, we explored the protective effects of fermented oyster extract (FO) against receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in murine monocyte/macrophage RAW 264.7 cells. Our results showed that FO markedly inhibited RANKL-induced activation of tartrate-resistant acid phosphatase and formation of F-actin ring structure. Mechanistically, FO has been shown to down-regulate RANKL-induced expression of osteoclast-specific markers by blocking the nuclear translocation of NF-κB and the transcriptional activation of nuclear factor of activated T cells c1 (NFATc1) and c-Fos. Furthermore, FO markedly diminished ROS production by RANKL stimulation, which was associated with blocking the expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) and its regulatory subunit Rac-1. However, a small interfering RNA (siRNA) targeting NOX1 suppressed RANKL-induced expression of osteoclast-specific markers and production of ROS and attenuated osteoclast differentiation as in the FO treatment group. Collectively, our findings suggest that FO has anti-osteoclastogenic potential by inactivating the NF-κB-mediated NFATc1 and c-Fos signaling pathways and inhibiting ROS generation, followed by suppression of osteoclast-specific genes. Although further studies are needed to demonstrate efficacy in in vivo animal models, FO may be used as an effective alternative agent for the prevention and treatment of osteoclastogenic bone diseases.
Collapse
|
27
|
Ren H, Yu X, Shen G, Zhang Z, Shang Q, Zhao W, Huang J, Yu P, Zhan M, Lu Y, Liang Z, Tang J, Liang D, Yao Z, Yang Z, Jiang X. miRNA-seq analysis of human vertebrae provides insight into the mechanism underlying GIOP. Bone 2019; 120:371-386. [PMID: 30503955 DOI: 10.1016/j.bone.2018.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
High-throughput sequencing (HTS) was recently applied to detect microRNA (miRNA) regulation in age-related osteoporosis. However, miRNA regulation has not been reported in glucocorticoid-induced osteoporosis (GIOP) patients and the mechanism of GIOP remains elusive. To comprehensively analyze the role of miRNA regulation in GIOP based on human vertebrae and to explore the molecular mechanism, a high-throughput sequencing strategy was employed to identify miRNAs involved in GIOP. Twenty-six patients undergoing spinal surgery were included in this study. Six vertebral samples were selected for miRNA sequencing (miRNA-seq) analysis and 26 vertebral samples were verified by qRT-PCR. Bioinformatics was utilized for target prediction, to investigate the regulation of miRNA-mRNA networks, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Six significantly up-regulated miRNAs (including one novel miRNA) and three significantly down-regulated miRNAs were verified via miRNA-seq and verified in the vertebrae of GIOP patients. Up-regulated miRNAs included hsa-miR-214-5p, hsa-miR-10b-5p, hsa-miR-21-5p, hsa-miR-451a, hsa-miR-186-5p, and hsa-miR-novel-chr3_49,413 while down-regulated miRNAs included hsa-let-7f-5p, hsa-let-7a-5p, and hsa-miR-27a-3p. Bioinformatics analysis revealed 5983 and 23,463 predicted targets in the up-regulated and down-regulated miRNAs respectively, using the miRanda, miRBase and TargetScan databases. The target genes of these significantly altered miRNAs were enriched to 1939 GO terms and 84 KEGG pathways. GO terms revealed that up-regulated targets were most enriched in actin filament-based processes (BP), anchoring junction (CC), and cytoskeletal protein binding (MF). Conversely, the down-regulated targets were mostly enriched in multicellular organismal development (BP), intracellular membrane-bounded organelles (CC), and protein binding (MF). Top-10 pathway analysis revealed that the differentially expressed miRNAs in GIOP were closely related to bone metabolism-related pathways such as FoxO, PI3K-Akt, MAPK and Notch signaling pathway. These results suggest that significantly altered miRNAs may play an important role in GIOP by targeting mRNA and regulating biological processes and bone metabolism-related pathways such as MAPK, FoxO, PI3K-Akt and Notch signaling, which provides novel insight into the mechanism of GIOP and lays a good foundation for the prevention and treatment of GIOP.
Collapse
Affiliation(s)
- Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhida Zhang
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenhua Zhao
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinjing Huang
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Peiyuan Yu
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Meiqi Zhan
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yongqiang Lu
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ziyang Liang
- First Clinical Medical College, Guangzhou University of Chinese medicine, Guangzhou, China, 510405; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
28
|
Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030551. [PMID: 30696066 PMCID: PMC6387109 DOI: 10.3390/ijms20030551] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/20/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) can be a useful cell resource for developing biological treatment strategies for bone repair and regeneration, and their therapeutic applications hinge on an understanding of their physiological characteristics. N6-methyl-adenosine (m6A) is the most prevalent internal chemical modification of mRNAs and has recently been reported to play important roles in cell lineage differentiation and development. However, little is known about the role of m6A modification in the cell differentiation of BMSCs. To address this issue, we investigated the expression of N6-adenosine methyltransferases (Mettl3 and Mettl14) and demethylases (Fto and Alkbh5) and found that Mettl3 was upregulated in BMSCs undergoing osteogenic induction. Furthermore, we knocked down Mettl3 and demonstrated that Mettl3 knockdown decreased the expression of bone formation-related genes, such as Runx2 and Osterix. The alkaline phosphatase (ALP) activity and the formation of mineralized nodules also decreased after Mettl3 knockdown. RNA sequencing analysis revealed that a vast number of genes affected by Mettl3 knockdown were associated with osteogenic differentiation and bone mineralization. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that the phosphatidylinositol 3-kinase/AKT (PI3K-Akt) signaling pathway appeared to be one of the most enriched pathways, and Western blotting results showed that Akt phosphorylation was significantly reduced after Mettl3 knockdown. Mettl3 has been reported to play an important role in regulating alternative splicing of mRNA in previous research. In this study, we found that Mettl3 knockdown not only reduced the expression of Vegfa but also decreased the level of its splice variants, vegfa-164 and vegfa-188, in Mettl3-deficient BMSCs. These findings might contribute to novel progress in understanding the role of epitranscriptomic regulation in the osteogenic differentiation of BMSCs and provide a promising perspective for new therapeutic strategies for bone regeneration.
Collapse
|
29
|
A peptide containing the receptor binding site of insulin-like growth factor binding protein-2 enhances bone mass in ovariectomized rats. Bone Res 2018; 6:23. [PMID: 30109160 PMCID: PMC6089876 DOI: 10.1038/s41413-018-0024-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/31/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
Male Igfbp2−/− mice have a significant reduction in bone mass and administration of a peptide that contains the insulin-like growth factor binding protein-2(IGFBP-2) receptor-binding domain stimulates bone formation in these animals. Female Igfbp2−/− mice do not have this phenotype but following ovariectomy (OVX) lose more bone than OVX wild-type mice. This suggests that in the absence of estrogen, IGFBP-2 is required to maintain bone mass. Therefore these studies were undertaken to determine if this peptide could stimulate bone acquisition in OVX rats. OVX rats were divided into seven treatment groups: sham animals, OVX animals, OVX animals receiving a control scrambled peptide, or one of three doses of the active peptide termed PEG-HBD-1 (0.7, 2, and 6 mg·kg-1) and an OVX group receiving parathyroid hormone (PTH) (50 µg·kg-1 per day). The peptides were administered for 8 weeks. DXA revealed a significant reduction in femoral and tibial areal bone mineral density (aBMD) after OVX, whereas treatment with the high-dose peptide increased aBMD by 6.2% ± 2.4% (P < 0.01) compared to control peptide; similar to the increase noted with PTH (5.6% ± 3.0%, P < 0.01). Similar increases were noted with two lower doses of the peptide (3.8% ± 1.5%, P < 0.05 for low dose; 3.1% ± 1.6%, P = 0.07 for middle dose). Micro CT showed that the OVX control peptide animals had reductions of 41% and 64% in femoral trabecular BV/TV and trabecular number, respectively. All three doses of the peptide increased bone volume/total volume (BV/TV) significantly, while the low and middle doses increased trabecular number. Cortical BV/TV and thickness at the midshaft increased significantly with each dose of peptide (18.9% ± 9.8%, P < 0.01 and 14.2% ± 7.9%, P < 0.01 for low dose; 23.7% ± 10.7%, P < 0.001 and 15.8% ± 6.1%, P < 0.001 for middle dose; 19.0% ± 6.9%, P < 0.01 and 16.2% ± 9.7%, P < 0.001 for high dose) and with PTH (25.8% ± 9.2%, P < 0.001 and 19.4% ± 8.8%, P < 0.001). Histomorphometry showed that the lowest dose of peptide stimulated BV/TV, trabecular thickness, mineral apposition rate (MAR), bone formation rate/bone surface (BFR/BS), number of osteoblasts/bone perimeter (N.ob/B.pm), and decreased osteoclast surface/bone perimeter (Oc.S/B.Pm). The highest dose stimulated each of these parameters except MAR and BFR/BS. Thus, the heparin-binding domain receptor region of IGFBP-2 accounts for its anabolic activity in bone. Importantly, this peptide enhances bone mass in estrogen-deficient animals. An experimental peptide stimulates bone acquisition in female rats who have had their ovaries removed, raising the prospect a new drug for osteoporosis. IGFBP-2 is an insulin-like growth factor (IGF) binding protein, which regulates the amount of IGF-I and II that are transported out of the blood and are available to influence the growth and proliferation of bone-producing osteoblasts. Previous studies have suggested that IGFBP-2 is required to maintain bone mass in the absence of estrogen, and that a 13 amino acid peptide (HBD1) from the core of the protein could provide a substitute for it. In this study, David Clemmons at the University of North Carolina at Chapel Hill and his colleagues demonstrate that injecting the peptide into ovariectomized female rats prompts significant increases in bone mass, whereas control animals lost bone.
Collapse
|
30
|
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018; 19:ijms19071946. [PMID: 29970828 PMCID: PMC6073131 DOI: 10.3390/ijms19071946] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm2 energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
Collapse
Affiliation(s)
- Alessia Tani
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, via dell' Olivuzzo 162, 50143 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
31
|
Zhang Q, Xiao K, Liu H, Song L, McGarvey JC, Sneddon WB, Bisello A, Friedman PA. Site-specific polyubiquitination differentially regulates parathyroid hormone receptor-initiated MAPK signaling and cell proliferation. J Biol Chem 2018; 293:5556-5571. [PMID: 29444827 DOI: 10.1074/jbc.ra118.001737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Indexed: 01/04/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling and trafficking are essential for cellular function and regulated by phosphorylation, β-arrestin, and ubiquitination. The GPCR parathyroid hormone receptor (PTHR) exhibits time-dependent reversible ubiquitination. The exact ubiquitination sites in PTHR are unknown, but they extend upstream of its intracellular tail. Here, using tandem MS, we identified Lys388 in the third loop and Lys484 in the C-terminal tail as primary ubiquitination sites in PTHR. We found that PTHR ubiquitination requires β-arrestin and does not display a preference for β-arrestin1 or -2. PTH stimulated PTHR phosphorylation at Thr387/Thr392 and within the Ser489-Ser493 region. Such phosphorylation events may recruit β-arrestin, and we observed that chemically or genetically blocking PTHR phosphorylation inhibits its ubiquitination. Specifically, Ala replacement at Thr387/Thr392 suppressed β-arrestin binding and inhibited PTHR ubiquitination, suggesting that PTHR phosphorylation and ubiquitination are interdependent. Of note, Lys-deficient PTHR mutants promoted normal cAMP formation, but exhibited differential mitogen-activated protein kinase (MAPK) signaling. Lys-deficient PTHR triggered early onset and delayed ERK1/2 signaling compared with wildtype PTHR. Moreover, ubiquitination of Lys388 and Lys484 in wildtype PTHR strongly decreased p38 signaling, whereas Lys-deficient PTHR retained signaling comparable to unstimulated wildtype PTHR. Lys-deficient, ubiquitination-refractory PTHR reduced cell proliferation and increased apoptosis. However, elimination of all 11 Lys residues in PTHR did not affect its internalization and recycling. These results pinpoint the ubiquitinated Lys residues in PTHR controlling MAPK signaling and cell proliferation and survival. Our findings suggest new opportunities for targeting PTHR ubiquitination to regulate MAPK signaling or manage PTHR-related disorders.
Collapse
Affiliation(s)
- Qiangmin Zhang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Kunhong Xiao
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Hongda Liu
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Lei Song
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Jennifer C McGarvey
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - W Bruce Sneddon
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Alessandro Bisello
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Peter A Friedman
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and .,the Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
32
|
Marie PJ, Cohen-Solal M. The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. J Bone Miner Res 2018; 33:199-210. [PMID: 29206311 DOI: 10.1002/jbmr.3356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
During the last three decades, important progress in bone cell biology and in human and mouse genetics led to major advances in our understanding of the life and functions of cells of the osteoblast lineage. Previously unrecognized sources of osteogenic cells have been identified. Novel cellular and molecular mechanisms controlling osteoblast differentiation and senescence have been determined. New mechanisms of communications between osteogenic cells, osteocytes, osteoclasts, and chondrocytes, as well as novel links between osteogenic cells and blood vessels have been identified. Additionally, cells of the osteoblast lineage were shown to be important components of the hematopoietic niche and to be implicated in hematologic dysfunctions and malignancy. Lastly, unexpected interactions were found between osteogenic cells and several soft tissues, including the central nervous system, gut, muscle, fat, and testis through the release of paracrine factors, making osteogenic cells multifunctional regulatory cells, in addition to their bone-making function. These discoveries considerably enlarged our vision of the life and functions of osteogenic cells, which may lead to the development of novel therapeutics with immediate applications in bone disorders. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
33
|
MacDonald K, Price RB, Boyd D. The Feasibility and Functional Performance of Ternary Borate-Filled Hydrophilic Bone Cements: Targeting Therapeutic Release Thresholds for Strontium. J Funct Biomater 2017; 8:jfb8030028. [PMID: 28708123 PMCID: PMC5618279 DOI: 10.3390/jfb8030028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/25/2023] Open
Abstract
We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days.
Collapse
Affiliation(s)
- Kathleen MacDonald
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 1X7, Canada.
| | - Richard B Price
- Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS B3H 1X7, Canada.
- Department Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1X7, Canada.
| | - Daniel Boyd
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 1X7, Canada.
- Department Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1X7, Canada.
| |
Collapse
|
34
|
Wu MH, Lee TH, Lee HP, Li TM, Lee IT, Shieh PC, Tang CH. Kuei-Lu-Er-Xian-Jiao extract enhances BMP-2 production in osteoblasts. Biomedicine (Taipei) 2017; 7:2. [PMID: 28474578 PMCID: PMC5439337 DOI: 10.1051/bmdcn/2017070102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a common skeletal disorder, resulting from an imbalance in bone resorption relative to formation. Bone morphogenetic protein (BMP) is a key regulator in bone formation and osteoblastic differentiation. Hence, compounds that promote BMP expression may be suitable candidates for osteoporosis treatment. This study examined the effects of the traditional Chinese medicinal agent, Kuei-Lu-Er-Xian-Jiao (KLEXJ), on BMP-2 production in osteoblasts. We found that KLEXJ extract promoted osteoblastic differentiation marker ALP activity and increased BMP-2 production; pretreatment with PI3K and Akt inhibitors, or small interfering RNA (siRNA), reduced these effects. KLEXJ also enhanced PI3K and Akt phosphorylation. Treatment of osteoblastic cells with NF-κB inhibitors (TPCK or PDTC) markedly inhibited KLEXJ-enhancement of ALP activity and BMP-2 production. KLEXJ also significantly promoted p65 phosphorylation, while treatment with PI3K and Akt inhibitors antagonized KLEXJ-enhanced p65 phosphorylation. Thus, KLEXJ enhances ALP activity and BMP-2 production of osteoblasts through the PI3K/Akt/ NF-κB signaling pathway and hence may be suitable in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung 407, Taiwan - Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung 407, Taiwan
| | - Ting-Hsuan Lee
- School of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Hsiang-Ping Lee
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Te-Mao Li
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - I-Tee Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan - Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan - Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Po-Chuen Shieh
- School of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan - Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan - Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan
| |
Collapse
|
35
|
AKT Pathway Affects Bone Regeneration in Nonunion Treated with Umbilical Cord-Derived Mesenchymal Stem Cells. Cell Biochem Biophys 2016; 71:1543-51. [PMID: 25413962 PMCID: PMC4449366 DOI: 10.1007/s12013-014-0378-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
We have previously grafted human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with blood plasma to treat rat tibia nonunion. To further examine the biological characteristics of this process, we applied an established hUC-MSCs-treated rat nonunion model with the addition of an inhibitor of AKT. SD rats (80) were randomly divided into four groups: a fracture group (positive control); a nonunion group (negative control); a hUC-MSCs grafting with blood plasma group; and a hUC-MSCs grafting with blood plasma & AKT blocker group. The animals were sacrificed under deep anesthesia at 4 and 8 weeks post fracture for analysis. The fracture line became less defined at 4 weeks and disappeared at 8 weeks postoperatively in both the hUC-MSCs grafting with blood plasma and grafting with blood plasma & the AKT blocker, which is similar to the fracture group. Histological immunofluorescence studies showed that the numbers of hUC-MSCs in the calluses were significantly higher in the hUC-MSCs grafting with blood plasma than those in group with the AKT blocker. More bone morphogenetic protein 2 and bone sialoprotein expression and less osteoprotegerin and bone gla protein expression were observed in the AKT blocker group compared to the hUC-MSCs grafting with blood plasma. AKT gene expression in the AKT blocker group was decreased 50% compared to the hUC-MSCs with plasma group and decreased 70% compared to the fracture group, while the elastic modulus was decreased. In summary, our work demonstrates that AKT may play a role in modulating osteogenesis induced by hUC-MSCs.
Collapse
|
36
|
Jakob F, Genest F, Baron G, Stumpf U, Rudert M, Seefried L. [Regulation of bone metabolism in osteoporosis : novel drugs for osteoporosis in development]. Unfallchirurg 2016; 118:925-32. [PMID: 26471379 DOI: 10.1007/s00113-015-0085-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bone is continuously regenerated and remodeled as an adaptation to mechanical load. Bone mass and fracture resistance are maintained by a balanced equilibrium between bone formation and bone resorption. Regeneration and response to mechanical load are, however, impaired in osteoporosis and during aging. Bone resorption is enhanced by chronic inflammation while bone formation is altered by rising levels of inhibitors in the aging organism. Core molecular principles of the regulation of bone metabolism in health and disease have been characterized and developed as therapeutic targets. The receptor activator of nuclear factor kappaB ligand (RANKL) and osteoclast-derived protease cathepsin K are important regulators and effectors of osteoclast differentiation and bone resorption. Bone formation is stimulated by bone morphogenetic proteins (BMP) and via the parathyroid hormone receptor and the Wnt signaling pathway. The principles of osteoclast inhibition using bisphosphonates have now been known for almost three decades. Based on more recent knowledge RANKL and cathepsin K have been developed as new therapeutic targets to inhibit bone resorption. While denosumab, a RANKL antibody, has already been introduced into routine treatment strategies, the cathepsin K antagonist odanacatib is currently in the licensing process. Bone formation can also be stimulated by local administration of BMPs, by systemic treatment with the parathyroid hormone fragment teriparatide and by using antibodies targeting the Wnt inhibitor sclerostin. The latter are presently being tested in phase III clinical studies. In the near future a panel of traditional and novel treatment strategies will be available that will enable us to meet the individual clinical needs during aging and for the treatment of osteoporosis.
Collapse
Affiliation(s)
- F Jakob
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland.
| | - F Genest
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - G Baron
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - U Stumpf
- Osteologisches Schwerpunktzentrum, Chirurgische Klinik und Poliklinik, Nußbaumstr. 20, 80336, München, Deutschland
| | - M Rudert
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - L Seefried
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| |
Collapse
|
37
|
Ke K, Li Q, Yang X, Xie Z, Wang Y, Shi J, Chi L, Xu W, Hu L, Shi H. Asperosaponin VI promotes bone marrow stromal cell osteogenic differentiation through the PI3K/AKT signaling pathway in an osteoporosis model. Sci Rep 2016; 6:35233. [PMID: 27756897 PMCID: PMC5069473 DOI: 10.1038/srep35233] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/26/2016] [Indexed: 11/24/2022] Open
Abstract
Asperosaponin VI (ASA VI), a natural compound isolated from the well-known traditional Chinese herb Radix Dipsaci, has an important role in promoting osteoblast formation. However, its effects on osteoblasts in the context of osteoporosis is unknown. This study aimed to investigate the effects and mechanism of ASA VI action on the proliferation and osteogenic differentiation of bone marrow stromal cells isolated from the ovariectomized rats (OVX rBMSCs). The toxicity of ASA VI and its effects on the proliferation of OVX rBMSCs were measured using a CCK-8 assay. Various osteogenic differentiation markers were also analyzed, such as ALP activity, calcified nodule formation, and the expression of osteogenic genes, i.e., ALP, OCN, COL 1 and RUNX2. The results indicated that ASA VI promoted the proliferation of OVX rBMSCs and enhanced ALP activity and calcified nodule formation. In addition, while ASA VI enhanced the expression of ALP, OCN, Col 1 and RUNX2, treatment with LY294002 reduced all of these osteogenic effects and reduced the p-AKT levels induced by ASA VI. These results suggest that ASA VI promotes the osteogenic differentiation of OVX rBMSCs by acting on the phosphatidylinositol—3 kinase/AKT signaling pathway.
Collapse
Affiliation(s)
- Ke Ke
- Hangzhou Medical College Binwen Road,Hangzhou,310053, China
| | - Qi Li
- Stomatology Hospital, School of Medicine, Zhejiang university, Yan'an Road, Hangzhou 310006, China
| | - Xiaofeng Yang
- Hangzhou Medical College Binwen Road,Hangzhou,310053, China
| | - Zhijian Xie
- Stomatology Hospital, School of Medicine, Zhejiang university, Yan'an Road, Hangzhou 310006, China
| | - Yu Wang
- Stomatology Hospital, School of Medicine, Zhejiang university, Yan'an Road, Hangzhou 310006, China
| | - Jue Shi
- Stomatology Hospital, School of Medicine, Zhejiang university, Yan'an Road, Hangzhou 310006, China
| | - Linfeng Chi
- Stomatology Hospital, School of Medicine, Zhejiang university, Yan'an Road, Hangzhou 310006, China
| | - Weijian Xu
- Stomatology Hospital, School of Medicine, Zhejiang university, Yan'an Road, Hangzhou 310006, China
| | - Lingling Hu
- Stomatology Hospital, School of Medicine, Zhejiang university, Yan'an Road, Hangzhou 310006, China
| | - Huali Shi
- Hangzhou Medical College Binwen Road,Hangzhou,310053, China
| |
Collapse
|
38
|
Rauner M, Franke K, Murray M, Singh RP, Hiram-Bab S, Platzbecker U, Gassmann M, Socolovsky M, Neumann D, Gabet Y, Chavakis T, Hofbauer LC, Wielockx B. Increased EPO Levels Are Associated With Bone Loss in Mice Lacking PHD2 in EPO-Producing Cells. J Bone Miner Res 2016; 31:1877-1887. [PMID: 27082941 DOI: 10.1002/jbmr.2857] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
The main oxygen sensor hypoxia inducible factor (HIF) prolyl hydroxylase 2 (PHD2) is a critical regulator of tissue homeostasis during erythropoiesis, hematopoietic stem cell maintenance, and wound healing. Recent studies point toward a role for the PHD2-erythropoietin (EPO) axis in the modulation of bone remodeling, even though the studies produced conflicting results. Here, we used a number of mouse strains deficient of PHD2 in different cell types to address the role of PHD2 and its downstream targets HIF-1α and HIF-2α in bone remodeling. Mice deficient for PHD2 in several cell lineages, including EPO-producing cells, osteoblasts, and hematopoietic cells (CD68:cre-PHD2f/f ) displayed a severe reduction of bone density at the distal femur as well as the vertebral body due to impaired bone formation but not bone resorption. Importantly, using osteoblast-specific (Osx:cre-PHD2f/f ) and osteoclast-specific PHD2 knock-out mice (Vav:cre- PHD2f/f ), we show that this effect is independent of the loss of PHD2 in osteoblast and osteoclasts. Using different in vivo and in vitro approaches, we show here that this bone phenotype, including the suppression of bone formation, is directly linked to the stabilization of the α-subunit of HIF-2, and possibly to the subsequent moderate induction of serum EPO, which directly influenced the differentiation and mineralization of osteoblast progenitors resulting in lower bone density. Taken together, our data identify the PHD2:HIF-2α:EPO axis as a so far unknown regulator of osteohematology by controlling bone homeostasis. Further, these data suggest that patients treated with PHD inhibitors or EPO should be monitored with respect to their bone status. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Kristin Franke
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Marta Murray
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Rashim Pal Singh
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Uwe Platzbecker
- Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA.,Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany. .,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany. .,Center for Regenerative Therapies Dresden, Dresden, Germany.
| |
Collapse
|
39
|
The effects of spinal cord injury on bone loss and dysregulation of the calcium/parathyroid hormone loop in mice. Osteoporos Sarcopenia 2016; 2:164-169. [PMID: 30775482 PMCID: PMC6372742 DOI: 10.1016/j.afos.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/23/2022] Open
Abstract
Objective To map the progression of osteoporosis following spinal cord injury in mice in specific areas and analyze changes in parathyroid hormone (PTH) and ion levels which could be responsible for overall bone loss. Summary of background data Spinal cord injury rapidly induces severe bone loss compared to other conditions, yet the cause of this bone loss has not been identified. Studies suggest the bone loss after injury is not solely due to disuse. Methods To quantify bone loss we weighed individual bones and measured bone mineral density using dual energy X-ray absorptiometry at acute (1 week) and chronic (4 week) time points following a T9 contusion. An ELISA was used to measure blood PTH levels at 1 and 4 weeks after injury. Calcium and phosphate levels were also analyzed at 4 weeks following injury at the University of Miami pathology core. Results We observed a significant decrease in bone mineral density in hind limbs after an acute injury, and found this bone loss to progress over time. Furthermore, following chronic injury a decrease in bone mineral density is also observed in bones above the level of injury and in the total bone mineral density. We observed a significant decrease in parathyroid hormone levels in injured mice at the chronic time point, but not at the acute time point which suggests this could be involved in the global bone loss following injury. We also observed a significant increase in serum calcium levels following injury which could account for the imbalance of PTH levels.
Collapse
|
40
|
Tharmalingam S, Hampson DR. The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration. Front Physiol 2016; 7:190. [PMID: 27303307 PMCID: PMC4880553 DOI: 10.3389/fphys.2016.00190] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration.
Collapse
Affiliation(s)
| | - David R Hampson
- Pharmaceutical Sciences, University of Toronto Toronto, ON, Canada
| |
Collapse
|
41
|
Laiuppa JA, Santillán GE. Effect of Combined Action of Extracellular ATP and Elevated Calcium on Osteogenic Differentiation of Primary Cultures From Rat Calvaria. J Cell Biochem 2016; 117:2658-68. [PMID: 27038365 DOI: 10.1002/jcb.25565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/31/2016] [Indexed: 11/06/2022]
Abstract
The in vitro osteogenic differentiation has been intensively studied. However, it is not yet clear precisely how osteogenesis can be optimized. Changes in extracellular Ca(2+) concentration ([Ca(2+) ]e ), as well as modulation of purinergic receptors play an important role in the regulation of osteoblasts differentiation and bone formation. In this study, we investigated the effects of a combined treatment of ATPγ-S and high [Ca(2+) ]e (5.35 mM) on osteogenic differentiation and function of primary cell cultures from rat calvaria. Our results indicate that ATPγ-S stimulates cell transition from the G0 to S phase of cell cycle, involving the PI3K signaling pathway. Treatment with 10 or 100 µM ATPγ-S and [Ca(2+) ]e (ATP-[Ca(2+) ]e ) for 48 h increases cell number significantly above the control. ATPγ-S treatment in osteogenic medium containing [Ca(2+) ]e stimulates the gene expression of BMP-4, BMP-5, and OPN at 16, 48, and 72 h, respectively, above control. In same conditions, treatment for 6 days with 10 µM UTP or 100 µM UDP significantly increased the ALP activity respect to control. Cells grown in osteogenic medium showed a statistically significant increase in calcium deposits at 15 and 18 days, for 10 µM ATPγ-S treatment, and at 18 and 22 days, for [Ca(2+) ]e treatment, respect to control but ATP-[Ca(2+) ]e treatment shown a significant greater mineralization at 15 days respect to ATPγ-S, and at 18 days respect to both agonists. In conclusion, we demonstrated that an osteogenic medium containing 10 µM ATPγ-S and 5.35 mM [Ca(2+) ]e enhance osteogenesis and mineralization by rat primary calvarial cells cultures. J. Cell. Biochem. 117: 2658-2668, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan A Laiuppa
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET, San Juan 670, (B8000ICN) Bahía Blanca, Argentina
| | - Graciela E Santillán
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET, San Juan 670, (B8000ICN) Bahía Blanca, Argentina.
| |
Collapse
|
42
|
Abdelgawad ME, Delaisse JM, Hinge M, Jensen PR, Alnaimi RW, Rolighed L, Engelholm LH, Marcussen N, Andersen TL. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts. Histochem Cell Biol 2016; 145:603-15. [PMID: 26860863 DOI: 10.1007/s00418-016-1414-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.
Collapse
Affiliation(s)
- Mohamed Essameldin Abdelgawad
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark.,Faculty of Science, Helwan University, Helwan, Egypt
| | - Jean-Marie Delaisse
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark.
| | - Maja Hinge
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark.,Division of Hematology, Department of Internal Medicine, Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Vejle, Denmark
| | - Pia Rosgaard Jensen
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark
| | - Ragad Walid Alnaimi
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark
| | - Lars Rolighed
- Breast and Endocrine Section, Department of Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Lars H Engelholm
- The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas Levin Andersen
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark.
| |
Collapse
|
43
|
Kumar KR, Chen W, Koduru PR, Luu HS. Myeloid and lymphoid neoplasm with abnormalities of FGFR1 presenting with trilineage blasts and RUNX1 rearrangement: a case report and review of literature. Am J Clin Pathol 2015; 143:738-48. [PMID: 25873510 DOI: 10.1309/ajcpud6w1jlqqmna] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Myeloid and lymphoid neoplasms with abnormalities of fibroblast growth factor receptor 1 gene (FGFR1) are a rare and aggressive disease group that harbors translocations of FGFR1 with at least 14 recognized partner genes. We report a case of a patient with a novel t(17;21)(p13;q22) with RUNX1 rearrangement and trilineage blasts. METHODS A 29-year-old man with relapsed T-lymphoblastic lymphoma in the cervical nodes showed a myeloproliferative neoplasm in his bone marrow with three separate populations of immunophenotypically aberrant myeloid, T-lymphoid, and B-lymphoid blasts by flow cytometry. Cytogenetic and fluorescent in situ hybridization studies showed unique dual translocations of t(8;13)(p11.2;q12) and t(17;21)(p13;q22) with RUNX1 rearrangement. RESULTS The patient was initiated on a mitoxantrone, etoposide, and cytarabine chemotherapy regimen and died of complications of disease 1 month later. CONCLUSIONS To our knowledge, this is the first reported case of a myeloid and lymphoid neoplasm with abnormalities of FGFR1 with t(17;21)(p13;q22) and trilineage blasts.
Collapse
Affiliation(s)
- Kirthi R. Kumar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Prasad R. Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Hung S. Luu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
44
|
Marie PJ. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies. Cell Mol Life Sci 2015; 72:1347-61. [PMID: 25487608 PMCID: PMC11113967 DOI: 10.1007/s00018-014-1801-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/27/2022]
Abstract
Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- INSERM UMR-1132, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475, Paris Cedex 10, France,
| |
Collapse
|
45
|
Lim SV, Marenzana M, Hopkinson M, List EO, Kopchick JJ, Pereira M, Javaheri B, Roux JP, Chavassieux P, Korbonits M, Chenu C. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength. Endocrinology 2015; 156:1362-71. [PMID: 25646711 PMCID: PMC4399323 DOI: 10.1210/en.2014-1572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.
Collapse
Affiliation(s)
- S V Lim
- Department of Comparative and Biomedical Sciences (S.V.L., M.H., M.P., B.J., C.C.), Royal Veterinary College, London NW1 0TU, United Kingdom; Imperial College (M.M.), London SW7 2AZ, United Kingdom; Edison Biotechnology Institute (E.O.L., J.J.K.), Ohio University, Ohio 45701; INSERM Unité Mixte de Recherche 1033 and Université de Lyon (J.P.R., P.C.), 69372 Lyon Cedex 08, France; and Department of Endocrinology (M.K.), Barts and the London School of Medicine, Queen Mary University of London, London EC1A 6BQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ségaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 2015; 4:1-12. [PMID: 26579483 PMCID: PMC4620971 DOI: 10.1016/j.jbo.2015.01.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/13/2023] Open
Abstract
Bone cancers are characterised by the development of tumour cells in bone sites, associated with a dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been developed to target the cancer cells or tumour niche. As the crosstalk between these two entities is tightly controlled by the release of polypeptide mediators activating signalling pathways through several receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as imatinib mesylate, which has become a reference treatment for chronic myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main molecular and functional characteristics of RTKs, and focuses on the clinical applications that are envisaged and already assessed for the treatment of bone sarcomas and bone metastases.
Collapse
Affiliation(s)
- Aude I Ségaliny
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marta Tellez-Gabriel
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marie-Françoise Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| |
Collapse
|
47
|
Kobayashi K, Toguchida J, Karin M, Kato T. IKKβ in postnatal perichondrium remotely controls endochondral ossification of the growth plate through downregulation of MCP-5. Cell Death Differ 2014; 22:852-61. [PMID: 25526093 DOI: 10.1038/cdd.2014.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 01/13/2023] Open
Abstract
IκB kinase β (IKKβ) is a catalytic subunit of the IKK complex, which activates nuclear factor-κB (NF-κB). Although its role in osteoclastogenesis is well established, the role of IKKβ in bone formation is poorly understood. Here, we report that conditional knockout of Ikkβ in limb bud mesenchymal cells results in the upregulation of monocyte chemoattractant protein-5 (MCP-5) in the perichondrium, which in turn inhibits the growth of longitudinal bone by compromising chondrocyte hypertrophy and increasing the apoptosis of chondrocytes within the growth plate. Contrary to expectations, IKKβ in cells of chondrocyte or osteoblast lineage was dispensable for bone growth. On the other hand, ex vivo experiments confirmed the role of MCP-5 in the growth of longitudinal bone. Furthermore, an in vitro study demonstrated that the action of IKKβ on MCP-5 is cell autonomous. Collectively, our results provide evidence for a previously unrecognized role of IKKβ in the regulation of the growth plate that is mediated through stimulation-independent downregulation of MCP-5 in the perichondrium.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - J Toguchida
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - M Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0723, USA
| | - T Kato
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
48
|
Klaus HD. Frontiers in the bioarchaeology of stress and disease: Cross-disciplinary perspectives from pathophysiology, human biology, and epidemiology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:294-308. [DOI: 10.1002/ajpa.22574] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Haagen D. Klaus
- Department of Sociology and Anthropology; George Mason University; Fairfax VA
- Museo Nacional Sicán; Ferreñafe Peru
- Museo Nacional de Arqueología y Etnografía Hans Heinrich Brüning de Lambayeque; Lambayeque Peru
| |
Collapse
|
49
|
Gemini-Piperni S, Takamori ER, Sartoretto SC, Paiva KBS, Granjeiro JM, de Oliveira RC, Zambuzzi WF. Cellular behavior as a dynamic field for exploring bone bioengineering: a closer look at cell-biomaterial interface. Arch Biochem Biophys 2014; 561:88-98. [PMID: 24976174 DOI: 10.1016/j.abb.2014.06.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
Bone is a highly dynamic and specialized tissue, capable of regenerating itself spontaneously when afflicted by minor injuries. Nevertheless, when major lesions occur, it becomes necessary to use biomaterials, which are not only able to endure the cellular proliferation and migration, but also to substitute the original tissue or integrate itself to it. With the life expectancy growth, regenerative medicine has been gaining constant attention in the reconstructive field of dentistry and orthopedy. Focusing on broadening the therapeutic possibilities for the regeneration of injured organs, the development of biomaterials allied with the applicability of gene therapy and bone bioengineering has been receiving vast attention over the recent years. The progress of cellular and molecular biology techniques gave way to new-guided therapy possibilities. Supported by multidisciplinary activities, tissue engineering combines the interaction of physicists, chemists, biologists, engineers, biotechnologist, dentists and physicians with common goals: the search for materials that could promote and lead cell activity. A well-oriented combining of scaffolds, promoting factors, cells, together with gene therapy advances may open new avenues to bone healing in the near future. In this review, our target was to write a report bringing overall concepts on tissue bioengineering, with a special attention to decisive biological parameters for the development of biomaterials, as well as to discuss known intracellular signal transduction as a new manner to be explored within this field, aiming to predict in vitro the quality of the host cell/material and thus contributing with the development of regenerative medicine.
Collapse
Affiliation(s)
- Sara Gemini-Piperni
- Laboratório de Bioensaios e Dinâmica Celular, Depto. Química e Bioquímica, Instituto de Biociência, Universidade Estadual Paulista, UNESP, Campus Botucatu, Botucatu, SP, Brazil; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | - Katiúcia B S Paiva
- Extracellular Matrix Biology and Cellular Interaction Group, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - José Mauro Granjeiro
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Diretoria de Programas (DIPRO)/Bioengenharia, Xerém, RJ, Brazil
| | - Rodrigo Cardoso de Oliveira
- Department of Biological Sciences, Bauru Dental School, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla 9-75, Bauru, São Paulo, SP 17012-901, Brazil
| | - Willian Fernando Zambuzzi
- Laboratório de Bioensaios e Dinâmica Celular, Depto. Química e Bioquímica, Instituto de Biociência, Universidade Estadual Paulista, UNESP, Campus Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|
50
|
Dotterweich J, Ebert R, Kraus S, Tower RJ, Jakob F, Schütze N. Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells. Cell Commun Signal 2014; 12:36. [PMID: 24965524 PMCID: PMC4081546 DOI: 10.1186/1478-811x-12-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022] Open
Abstract
CCN family member 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), belongs to the extracellular matrix-associated CCN protein family. The diverse functions of these proteins include regulation of cell migration, adhesion, proliferation, differentiation and survival/apoptosis, induction of angiogenesis and cellular senescence. Their functions are partly overlapping, largely non-redundant, cell-type specific, and depend on the local microenvironment. To elucidate the role of CCN1 in the crosstalk between stromal cells and myeloma cells, we performed co-culture experiments with primary mesenchymal stem cells (MSC) and the interleukin-6 (IL-6)-dependent myeloma cell line INA-6. Here we show that INA-6 cells display increased transcription and induction of splicing of intron-retaining CCN1 pre-mRNA when cultured in contact with MSC. Protein analyses confirmed that INA-6 cells co-cultured with MSC show increased levels of CCN1 protein consistent with the existence of a pre-mature stop codon in intron 1 that abolishes translation of unspliced mRNA. Addition of recombinant CCN1-Fc protein to INA-6 cells was also found to induce splicing of CCN1 pre-mRNA in a concentration-dependent manner. Only full length CCN1-Fc was able to induce mRNA splicing of all introns, whereas truncated recombinant isoforms lacking domain 4 failed to induce intron splicing. Blocking RGD-dependent integrins on INA-6 cells resulted in an inhibition of these splicing events. These findings expand knowledge on splicing of the proangiogenic, matricellular factor CCN1 in the tumor microenvironment. We propose that contact with MSC-derived CCN1 leads to splicing and enhanced transcription of CCN1 which further contributes to the translation of angiogenic factor CCN1 in myeloma cells, supporting tumor viability and myeloma bone disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| |
Collapse
|