1
|
Yao J, Xiang Y, Jiang C, Zhang Z, Gao F, Chen Z, Zheng R. Spinal tissue identification using a Forward-oriented endoscopic ultrasound technique. Biomed Eng Lett 2025; 15:193-201. [PMID: 39781062 PMCID: PMC11704109 DOI: 10.1007/s13534-024-00440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 01/12/2025] Open
Abstract
The limited imaging depth of optical endoscope restrains the identification of tissues under surface during the minimally invasive spine surgery (MISS), thus increasing the risk of critical tissue damage. This study is proposed to improve the accuracy and effectiveness of automatic spinal soft tissue identification using a forward-oriented ultrasound endoscopic system. Total 758 ex-vivo soft tissue samples were collected from ovine spines to create a dataset with four categories including spinal cord, nucleus pulposus, adipose tissue, and nerve root. Three conventional methods including Gray-level co-occurrence matrix (GLCM), Empirical Wavelet Transform (EWT), Variational Mode Decomposition (VMD) and two deep-learning based methods including Densely Connected Neural Network (DenseNet) model, one-dimensional Vision Transformer (ViT) model, were applied to identify the spinal tissues. The two deep learning methods outperformed the conventional methods with both accuracy over 95%. Especially the signal-based method (ViT) achieved an accuracy of 98.31% and a specificity of 99.2%, and the inference latency was only 0.0025 s. It illustrated the feasibility of applying the forward-oriented ultrasound endoscopic system for real-time intraoperative recognition of critical spinal tissues to enhance the precision and safety of minimally invasive spine surgery.
Collapse
Affiliation(s)
- Jiaqi Yao
- School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China
| | - Yiwei Xiang
- School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China
| | - Chang Jiang
- Department of Orthopedic, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
| | - Zhiyang Zhang
- Department of Orthopedic, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
| | - Fei Gao
- School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China
| | - Zixian Chen
- Department of Orthopedic, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
| | - Rui Zheng
- School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| |
Collapse
|
2
|
Cannalire G, Biasucci G, Bertolini L, Patianna V, Petraroli M, Pilloni S, Esposito S, Street ME. Osteoporosis and Bone Fragility in Children: Diagnostic and Treatment Strategies. J Clin Med 2024; 13:4951. [PMID: 39201093 PMCID: PMC11355204 DOI: 10.3390/jcm13164951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
The incidence of osteoporosis in children is increasing because of the increased survival rate of children with chronic diseases and the increased use of bone-damaging drugs. As childhood bone fragility has several etiologies, its management requires a thorough evaluation of all potentially contributing pathogenetic mechanisms. This review focuses on the main causes of primary and secondary osteoporosis and on the benefits and limits of the different radiological methods currently used in clinical practice for the study of bone quality. The therapeutic and preventive strategies currently available and the most novel diagnostic and treatment strategies are also presented. Optimal management of underlying systemic conditions is key for the treatment of bone fragility in childhood. DXA still represents the gold standard for the radiologic evaluation of bone health in children, although other imaging techniques such as computed tomography and ultrasound evaluations, as well as REMS, are increasingly studied and used. Bisphosphonate therapy is the gold standard for pharmacological treatment in both primary and secondary pediatric osteoporosis. Evidence and experience are building up relative to the use of monoclonal antibodies such as denosumab in cases of poor response to bisphosphonates in specific conditions such as osteogenesis imperfecta, juvenile Paget's disease and in some cases of secondary osteoporosis. Lifestyle interventions including adequate nutrition with adequate calcium and vitamin D intake, as well as physical activity, are recommended for prevention.
Collapse
Affiliation(s)
- Giuseppe Cannalire
- Paediatrics and Neonatology Unit, University of Parma, Guglielmo da Saliceto Hospital, 43121 Piacenza, Italy;
| | - Giacomo Biasucci
- Paediatrics and Neonatology Unit, University of Parma, Guglielmo da Saliceto Hospital, 43121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.P.); (M.E.S.)
| | - Lorenzo Bertolini
- Unit of Paediatric Radiology, University Hospital of Parma, 43126 Parma, Italy
| | - Viviana Patianna
- Unit of Paediatrics, Department of Mother and Child, University Hospital of Parma, 43126 Parma, Italy
| | - Maddalena Petraroli
- Unit of Paediatrics, Department of Mother and Child, University Hospital of Parma, 43126 Parma, Italy
| | - Simone Pilloni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.P.); (M.E.S.)
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.P.); (M.E.S.)
- Unit of Paediatrics, Department of Mother and Child, University Hospital of Parma, 43126 Parma, Italy
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.P.); (M.E.S.)
- Unit of Paediatrics, Department of Mother and Child, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
3
|
Gómez-de-Tejada-Romero MJ, Murias-Henríquez C, Saavedra-Santana P, Sablón-González N, Abreu DR, Sosa-Henríquez M. Influence of serum uric acid on bone and fracture risk in postmenopausal women. Aging Clin Exp Res 2024; 36:156. [PMID: 39085733 PMCID: PMC11291523 DOI: 10.1007/s40520-024-02819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
AIMS Uric acid has been associated with several metabolic conditions, including bone diseases. Our objective here was to consider the relationship between serum uric acid levels and various bone parameters (bone mineral density, ultrasonographic parameters, vitamin D, PTH and serum calcium), as well as the prevalence and risk of fragility fracture. METHODS An observational and cross-sectional study carried out on 679 postmenopausal women, classified into 3 groups according to their serum uric acid levels, in whom bone densitometry, calcaneus ultrasounds, PTH, vitamin D and serum calcium analysis were done. Bone fractures were collected through the clinical history and lateral spinal X-ray. RESULTS Higher uric acid levels were found in women with older age, high BMI, diabetes, and high blood pressure. Higher levels of PTH and serum calcium were also observed, but did not effect on vitamin D. Serum uric acid was positively related to densitometric and ultrasonic parameters and negatively associated with vertebral fractures. CONCLUSIONS In the population of postmenopausal women studied, sUA levels were correlated with BMD, BUA, and QUI-Stiffness, and this correlation was independent of age and BMI. In addition, sUA was associated with a decrease in vertebral fractures. These results imply a beneficial influence of sUA on bone metabolism, with both a quantitative and qualitative positive effect, reflected in the lower prevalence of vertebral fractures.
Collapse
Affiliation(s)
| | - Carmen Murias-Henríquez
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain
| | - Pedro Saavedra-Santana
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain
| | - Nery Sablón-González
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain
| | - Delvys Rodríguez Abreu
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain
| | - Manuel Sosa-Henríquez
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain.
- Canary Health Service, Insular University Hospital, Bone Metabolic Unit, Las Palmas de Gran Canaria, Canaria, Spain.
| |
Collapse
|
4
|
Jerban S, Barrere V, Namiranian B, Wu Y, Alenezi S, Dorthe E, Dlima D, Shah SB, Chung CB, Du J, Andre MP, Chang EY. Ultrasound attenuation of cortical bone correlates with biomechanical, microstructural, and compositional properties. Eur Radiol Exp 2024; 8:21. [PMID: 38316687 PMCID: PMC10844174 DOI: 10.1186/s41747-023-00418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI). METHODS SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were also scanned using microcomputed tomography (μCT) at 9-μm isometric voxel size to measure bone mineral density (BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test. RESULTS α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while showing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), and PWPD (R = -0.45). CONCLUSIONS The negative correlation between α and T2-MM is likely indicating the relationship between QUS and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which is yet to be investigated thoroughly. RELEVANCE STATEMENT This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics. KEY POINTS • Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density. • Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents. • This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| | - Victor Barrere
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Yuanshan Wu
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Sameer B Shah
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Michael P Andre
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| |
Collapse
|
5
|
Jerban S, Ma Y, Jang H, Chang EY, Bukata S, Du J, Chung CB. Bone Biomarkers Based on Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2024; 28:62-77. [PMID: 38330971 PMCID: PMC11786623 DOI: 10.1055/s-0043-1776431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) is increasingly used to evaluate the microstructural and compositional properties of bone. MRI-based biomarkers can characterize all major compartments of bone: organic, water, fat, and mineral components. However, with a short apparent spin-spin relaxation time (T2*), bone is invisible to conventional MRI sequences that use long echo times. To address this shortcoming, ultrashort echo time MRI sequences have been developed to provide direct imaging of bone and establish a set of MRI-based biomarkers sensitive to the structural and compositional changes of bone. This review article describes the MRI-based bone biomarkers representing total water, pore water, bound water, fat fraction, macromolecular fraction in the organic matrix, and surrogates for mineral density. MRI-based morphological bone imaging techniques are also briefly described.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Susan Bukata
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
6
|
Pereira LF, Fontes-Pereira AJ, de Albuquerque Pereira WC. Influence of Low-Intensity Pulsed Ultrasound Parameters on the Bone Mineral Density in Rat Model: A Systematic Review. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1687-1698. [PMID: 37121881 DOI: 10.1016/j.ultrasmedbio.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Bone recovery typically depends on the age of organisms or the prevalence of metabolic disorders such as osteoporosis, which is a metabolic condition characterized by decreased bone strength and bone mineral density (BMD). Therefore, low-intensity pulsed ultrasound (LIPUS), a non-invasive method for osteogenic stimulation, presents promising results. However, heterogeneity in animal study designs is a typical characteristic. Hence, we conducted a systematic review to evaluate the effectiveness of LIPUS in the recovery of experimental bone defects using rat models. We examined the areal and volumetric BMD to identify LIPUS doses to be applied and evaluated the accuracy reported by previous studies. METHODS The Virtual Health Library regional portal, PubMed, Embase, EBSCOhost, Scopus and CAPES were reviewed for animal studies that compared fracture treatments based on LIPUS with sham or no treatments using rat models and reported BMD as an outcome. The tool provided by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) and the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist were used to assess the bias and quality of such studies. RESULTS Of the six studies reviewed, the most frequently used LIPUS dose had an ultrasonic frequency of 1.0 MHz, repetition rate of 0.1 kHz and pulse duration of 2000 μs. An intensity (ISATA) of 30 mW/cm2 was the most preferred for bone recovery. However, the BMD could not solely irrefutably evaluate the effectiveness of LIPUS in bone recovery as the results were discordant with each other. The discrepancies in experimental methodologies, low-quality classifications and high risk of bias in the selected studies, however, did not validate the undertaking of a meta-analysis. CONCLUSION On the basis of the BMD results, no sufficient evidence was found to recommend the use of LIPUS for bone recovery in rat models. Thus, this systematic review indicates that the accuracy of such reports must be improved to improve their scientific quality to facilitate a transition of LIPUS applications from pre-clinical research to clinic use.
Collapse
Affiliation(s)
- Luiz Fernando Pereira
- Biomedical Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Aldo José Fontes-Pereira
- Biomedical Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Centro Universitário Serra dos Órgãos-Unifeso, Teresópolis, Rio de Janeiro, Brazil
| | | |
Collapse
|
7
|
Lützelberger J, Arneth P, Franck A, Drese KS. Ultrasonic Interferometric Procedure for Quantifying the Bone-Implant Interface. SENSORS (BASEL, SWITZERLAND) 2023; 23:5942. [PMID: 37447790 DOI: 10.3390/s23135942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
The loosening of an artificial joint is a frequent and critical complication in orthopedics and trauma surgery. Due to a lack of accuracy, conventional diagnostic methods such as projection radiography cannot reliably diagnose loosening in its early stages or detect whether it is associated with the formation of a biofilm at the bone-implant interface. In this work, we present a non-invasive ultrasound-based interferometric measurement procedure for quantifying the thickness of the layer between bone and prosthesis as a correlate to loosening. In principle, it also allows for the material characterization of the interface. A well-known analytical model for the superposition of sound waves reflected in a three-layer system was combined with a new method in data processing to be suitable for medical application at the bone-implant interface. By non-linear fitting of the theoretical prediction of the model to the actual shape of the reflected sound waves in the frequency domain, the thickness of the interlayer can be determined and predictions about its physical properties are possible. With respect to determining the layer's thickness, the presented approach was successfully applied to idealized test systems and a bone-implant system in the range of approx. 200 µm to 2 mm. After further optimization and adaptation, as well as further experimental tests, the procedure offers great potential to significantly improve the diagnosis of prosthesis loosening at an early stage and may also be applicable to detecting the formation of a biofilm.
Collapse
Affiliation(s)
- Jan Lützelberger
- Institute of Sensor and Actuator Technology (ISAT), Coburg University of Applied Sciences and Arts, Am Hofbräuhaus 1b, 96450 Coburg, Germany
| | - Philipp Arneth
- Institute of Sensor and Actuator Technology (ISAT), Coburg University of Applied Sciences and Arts, Am Hofbräuhaus 1b, 96450 Coburg, Germany
| | - Alexander Franck
- Department of Trauma Surgery and Orthopedics, REGIOMED Clinical Center Coburg, Ketschendorfer Str. 33, 96450 Coburg, Germany
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Klaus Stefan Drese
- Institute of Sensor and Actuator Technology (ISAT), Coburg University of Applied Sciences and Arts, Am Hofbräuhaus 1b, 96450 Coburg, Germany
| |
Collapse
|
8
|
Pisani P, Conversano F, Muratore M, Adami G, Brandi ML, Caffarelli C, Casciaro E, Di Paola M, Franchini R, Gatti D, Gonnelli S, Guglielmi G, Lombardi FA, Natale A, Testini V, Casciaro S. Fragility Score: a REMS-based indicator for the prediction of incident fragility fractures at 5 years. Aging Clin Exp Res 2023; 35:763-773. [PMID: 36752950 PMCID: PMC10115670 DOI: 10.1007/s40520-023-02358-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Accurate estimation of the imminent fragility fracture risk currently represents a challenging task. The novel Fragility Score (FS) parameter, obtained during a Radiofrequency Echographic Multi Spectrometry (REMS) scan of lumbar or femoral regions, has been developed for the non-ionizing estimation of skeletal fragility. AIMS The aim of this study was to assess the performance of FS in the early identification of patients at risk for incident fragility fractures with respect to bone mineral density (BMD) measurements. METHODS Data from 1989 Caucasians of both genders were analysed and the incidence of fractures was assessed during a follow-up period up to 5 years. The diagnostic performance of FS to discriminate between patients with and without incident fragility fracture in comparison to that of the BMD T-scores measured by both Dual X-ray Absorptiometry (DXA) and REMS was assessed through ROC analysis. RESULTS Concerning the prediction of generic osteoporotic fractures, FS provided AUC = 0.811 for women and AUC = 0.780 for men, which resulted in AUC = 0.715 and AUC = 0.758, respectively, when adjusted for age and body mass index (BMI). For the prediction of hip fractures, the corresponding values were AUC = 0.780 for women and AUC = 0.809 for men, which became AUC = 0.735 and AUC = 0.758, respectively, after age- and BMI-adjustment. Overall, FS showed the highest prediction ability for any considered fracture type in both genders, resulting always being significantly higher than either T-scores, whose AUC values were in the range 0.472-0.709. CONCLUSION FS displayed a superior performance in fracture prediction, representing a valuable diagnostic tool to accurately detect a short-term fracture risk.
Collapse
Affiliation(s)
- Paola Pisani
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | | | | | - Giovanni Adami
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, Verona, Italy
| | | | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Ernesto Casciaro
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Marco Di Paola
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Roberto Franchini
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Davide Gatti
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, Verona, Italy
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Giuseppe Guglielmi
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | | | | | - Valentina Testini
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Sergio Casciaro
- Institute of Clinical Physiology, National Research Council, Lecce, Italy.
| |
Collapse
|
9
|
Suo M, Zhang D, Yang H, Yang Y. Application of full waveform inversion algorithm in Laplace-Fourier domain for high-contrast ultrasonic bone quantitative imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107404. [PMID: 36758266 DOI: 10.1016/j.cmpb.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Full waveform inversion (FWI) has been widely applied for the reconstruction of underground medium parameters in seismic communities and has made a great success. It is also a promising way to image hard tissues such as bones by ultrasonic FWI algorithm. However, the ultrasonic FWI methods for bone parameters imaging reported in literature so far are limited to the time domain and/or Fourier domain, and can only achieve quantitative imaging with acoustic velocity of bone less than 3000 m/s. Because the acoustic velocity of actual cortical bones can be as high as 4200 m/s, it is still a challenge for FWI to achieve higher parameter contrast bone imaging. METHODS Here, we proposed an ultrasonic FWI algorithm in Laplace-Fourier domain (LFDFWI) for high-contrast bone quantitative imaging. Compared to Time domain and Fourier domain, the LFDFWI algorithm is more appropriate for dealing with the presence of high contrast between bone tissues, reducing the possibility of inversion falling into a local minimum, and obtaining better inversion results. We adapted the seismic FWI algorithm to make it suitable for high-frequency ultrasonic sources and small-sized bone parameter imaging. RESULTS We conducted a series of bone models to evaluate the effectiveness of the proposed algorithm, including four kinds of bone model derived from micro computed tomography (Micro-CT) image of rat. We evaluated the experimental results based on visual analysis, error analysis and structural similarity (SSIM). The numerical simulation results showed that, when acoustic approximation is used, the proposed method can obtain accurate high-contrast images of the velocity and density parameters of bone structure, the mean relative error (MRE) in the region of interest (ROI) were all less than 2%, and the SSIM is up to 98%; when the viscoelastic approximation is used, this method can also obtain the desired high-contrast bone parameter distribution, with MRE less than 4% and SSIM higher than 74%, both of which are better than FDFWI in Fourier domain (FDFWI). CONCLUSION The results demonstrated that the proposed FWI algorithm can obtain high resolution bone parameter models close to the Micro-CT image, which proves its clinical application potential.
Collapse
Affiliation(s)
- Meng Suo
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| | - Dong Zhang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Haiqi Yang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yan Yang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| |
Collapse
|
10
|
Gaujac N, Sariali E, Grimal Q. Does the bone mineral density measured on a preoperative CT scan before total hip arthroplasty reflect the bone's mechanical properties? Orthop Traumatol Surg Res 2023; 109:103348. [PMID: 35688378 DOI: 10.1016/j.otsr.2022.103348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION No method exists to quantify the bone quality and factors that will ensure osteointegration of total hip arthroplasty (THA) implants. A preoperative CT scan can be used to evaluate the bone mineral density (BMD) when planning a THA procedure. The aim of this study was to validate BMD measurement as a marker of bone quality based on a preoperative CT scan. HYPOTHESIS BMD reflects the bone's mechanical properties for the purposes of preoperative THA planning. METHODS Patients who underwent primary THA for hip osteoarthritis or dysplasia with cementless implants and 3D preoperative plan were enrolled prospectively. The cortical BMD was calculated on CT scans used in the preoperative planning process. During the surgical procedure, the femoral head and neck were collected. These bone samples were subsequently scanned with a calibrated micro-CT scanner. The BMD was derived from the micro-CT scan and used as input for a finite element model to determine the bone's mechanical properties. Correlations between BMD, apparent moduli of elasticity and porosity were calculated. RESULTS The values of cortical BMD measured on the micro-CT and CT scan were significantly correlated (cc=0.52). The mean angular cortical BMD measured with the micro-CT scan was 1472.33mg/cm3 (SD: 357.53mg/cm3, 980.64-2830.6mg/cm3). There was no significant correlation between cortical BMD and the various apparent moduli of elasticity, except for Eyy and Gzy. Cortical BMD and porosity were inversely correlated with a Spearman coefficient of -0.41 (CI95: [-0.71; -0.02], p=0.03). There was also an inverse correlation between the apparent moduli of elasticity (independent of their orientation) and porosity (p<0.01). DISCUSSION BMD provides information about porosity, which is a major factor when evaluating the bone's mechanical properties before THA. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Nicolas Gaujac
- Department of Orthopaedic Surgery, Hôpital La Pitié Salpétrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Elhadi Sariali
- Department of Orthopaedic Surgery, Hôpital La Pitié Salpétrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Quentin Grimal
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 15, rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
11
|
Najafi M, Najafi M, Keshtkar AA, Sedaghat M, Khalilifard AR, Larijani B, Hamidi Z. QUS characteristics in Normal Population: a Mini Review and our experience. J Diabetes Metab Disord 2022; 21:1635-1640. [PMID: 36404808 PMCID: PMC9672166 DOI: 10.1007/s40200-022-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/08/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
Abstract
Objectives Quantitative ultrasound (QUS) is a bone densitometry method that is less expensive and more portable than DXA. It is also noninvasive. QUS parameters include speed of sound (SOS), broad band ultrasound attenuation (BUA), and stiffness index (SI). This study defined normal values of QUS parameters in Iranian men and women. Methods QUS of heels measured in 258 Iranian men and women, aged 20-76 y/o. They were participants of Iranian Multicenter Osteoporosis study (IMOS), selected by randomized sampling. QUS device was an Achilles+ (GE-Lunar) device. Results Percentiles of SI (2.5%, 50%, and 97.5%) determined. We found a good agreement between the Iranian reference values and western reference (used by device) value in defining normal and osteoporotic people (κ = 0.875). Conclusion Results from this study suggest that QUS of the heel may be a good method for diagnosis of low bone mass in different regions.
Collapse
Affiliation(s)
- Maryam Najafi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Minoo Najafi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mojtaba Sedaghat
- Department of Community Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ali Reza Khalilifard
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zohreh Hamidi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
12
|
Tran TNHT, Le LH, Ta D. Ultrasonic Guided Waves in Bone: A Decade of Advancement in Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2875-2895. [PMID: 35930519 DOI: 10.1109/tuffc.2022.3197095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of guided wave ultrasonography as a means to assess cortical bone quality has been a significant practice in bone quantitative ultrasound for more than 20 years. In this article, the key developments within the technology of ultrasonic guided waves (UGW) in long bones during the past decade are documented. The covered topics include data acquisition configurations available for measuring bone guided waveforms, signal processing techniques applied to bone UGW, numerical modeling of ultrasonic wave propagation in cortical long bones, formulation of inverse approaches to extract bone properties from observed ultrasonic signals, and clinical studies to establish the technology's application and efficacy. The review concludes by highlighting specific challenging problems and future research directions. In general, the primary purpose of this work is to provide a comprehensive overview of bone guided-wave ultrasound, especially for newcomers to this scientific field.
Collapse
|
13
|
Ahmed R, Uppuganti S, Derasari S, Meyer J, Pennings JS, Elefteriou F, Nyman JS. Identifying Bone Matrix Impairments in a Mouse Model of Neurofibromatosis Type 1 (NF1) by Clinically Translatable Techniques. J Bone Miner Res 2022; 37:1603-1621. [PMID: 35690920 PMCID: PMC9378557 DOI: 10.1002/jbmr.4633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Three-to-four percent of children with neurofibromatosis type 1 (NF1) present with unilateral tibia bowing, fracture, and recalcitrant healing. Alkaline phosphatase (ALP) enzyme therapy prevented poor bone mineralization and poor mechanical properties in mouse models of NF1 skeletal dysplasia; but transition to clinical trials is hampered by the lack of a technique that (i) identifies NF1 patients at risk of tibia bowing and fracture making them eligible for trial enrollment and (ii) monitors treatment effects on matrix characteristics related to bone strength. Therefore, we assessed the ability of matrix-sensitive techniques to provide characteristics that differentiate between cortical bone from mice characterized by postnatal loss of Nf1 in Osx-creTet-Off ;Nf1flox/flox osteoprogenitors (cKO) and from wild-type (WT) mice. Following euthanasia at two time points of bone disease progression, femur and tibia were harvested from both genotypes (n ≥ 8/age/sex/genotype). A reduction in the mid-diaphysis ultimate force during three-point bending at 20 weeks confirmed deleterious changes in bone induced by Nf1 deficiency, regardless of sex. Pooling females and males, low bound water (BW), and low cortical volumetric bone mineral density (Ct.vBMD) were the most accurate outcomes in distinguishing cKO from WT femurs with accuracy improving with age. Ct.vBMD and the average unloading slope (Avg-US) from cyclic reference point indentation tests were the most sensitive in differentiating WT from cKO tibias. Mineral-to-matrix ratio and carbonate substitution from Raman spectroscopy were not good classifiers. However, when combined with Ct.vBMD and BW (femur), they helped predict bending strength. Nf1 deficiency in osteoprogenitors negatively affected bone microstructure and matrix quality with deficits in properties becoming more pronounced with duration of Nf1 deficiency. Clinically measurable without ionizing radiation, BW and Avg-US are sensitive to deleterious changes in bone matrix in a preclinical model of NF1 bone dysplasia and require further clinical investigation as potential indicators of an onset of bone weakness in children with NF1. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shrey Derasari
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua Meyer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jacquelyn S Pennings
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
14
|
Rosa PTCR, Fontes-Pereira AJ, Grimal Q, Pereira WCDA. Femoral neck phantom imaging using time-domain topological energy method. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:706. [PMID: 35931554 DOI: 10.1121/10.0012695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Ultrasonic bone imaging is a complex task, primarily because of the low energy contained in the signals reflected from the internal bone structures. In this study, the reconstruction of a bone-mimicking phantom echographic image using time-domain topological energy (TDTE) is proposed. A TDTE image results from a combination of forward and adjoint fields. The first is a solution of a numerical model that reproduces the setup of the experimental data acquisition to the best extent possible. The second has similar characteristics, but the source term is the time-reversed residue between the forward field and signals obtained from the experiment. The acquisition-reconstruction system used a linear phased-array transducer with a 5 MHz center frequency to acquire the signals and was coupled with a k-wave toolbox to implement the numerical models and perform the image reconstruction. The results showed good agreement between the geometry of the real phantom and the ultrasonic images. However, thickness evaluation errors were observed, which may be due to incorrect assumptions about the velocity models throughout the medium, a priori assumed to be known. Thus, this method has shown promising results and should be applied to the real femoral neck as a long-term objective.
Collapse
Affiliation(s)
- Paulo Tadeu C R Rosa
- Laboratório de Ultrassom, Programa de Engenharia Biomédica-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, Brazil
| | | | - Quentin Grimal
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris 75006, France
| | | |
Collapse
|
15
|
Song S, Chen H, Li C, Lou E, Le LH, Zheng R. Assessing Bone Quality of the Spine in Children with Scoliosis Using the Ultrasound Reflection Frequency Amplitude Index Method: A Preliminary Study. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:808-819. [PMID: 35181172 DOI: 10.1016/j.ultrasmedbio.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Osteopenia is considered a common phenomenon in patients who have scoliosis. Quantitative ultrasound has been used to assess skeletal status for decades, and recently ultrasound imaging using reflection signals from vertebrae were as well applied to measure spinal curvatures in children with scoliosis. The objectives of this study were to develop a new method that can robustly extract a parameter from ultrasound spinal data for estimating bone quality of scoliotic patients and to investigate the potential of the parameter in predicting curve progression. The frequency amplitude index (FAI) was calculated based on the spectrum of the original radiofrequency signals reflected from the tissue-vertebra interface. The correlation between FAI and reflection coefficient was validated using decalcified bovine bone samples in vitro, and the FAIs of scoliotic subjects were investigated in vivo with reference to body mass index, Cobb angles and curve progression status. The results revealed that the intra-rater measures were highly reliable between different trials (intra-class correlation coefficient = 0.997). The FAI value was strongly correlated with the reflection coefficient of bone tissue (R2 = 0.824), and the lower FAI indicated the higher risk of curve progression for the non-mild scoliosis cases. This preliminary study found that the FAI method can provide a feasible and robust approach to assessment of the bone quality of spine and may be a promising factor in monitoring curve progression of patients who have adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Sheng Song
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongbo Chen
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Conger Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Edmond Lou
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Zheng
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
16
|
Alunni Cardinali M, Di Michele A, Mattarelli M, Caponi S, Govoni M, Dallari D, Brogini S, Masia F, Borri P, Langbein W, Palombo F, Morresi A, Fioretto D. Brillouin-Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. J R Soc Interface 2022; 19:20210642. [PMID: 35104431 PMCID: PMC8807060 DOI: 10.1098/rsif.2021.0642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Bone has a sophisticated architecture characterized by a hierarchical organization, starting at the sub-micrometre level. Thus, the analysis of the mechanical and structural properties of bone at this scale is essential to understand the relationship between its physiology, physical properties and chemical composition. Here, we unveil the potential of Brillouin-Raman microspectroscopy (BRaMS), an emerging correlative optical approach that can simultaneously assess bone mechanics and chemistry with micrometric resolution. Correlative hyperspectral imaging, performed on a human diaphyseal ring, reveals a complex microarchitecture that is reflected in extremely rich and informative spectra. An innovative method for mechanical properties analysis is proposed, mapping the intermixing of soft and hard tissue areas and revealing the coexistence of regions involved in remodelling processes, nutrient transportation and structural support. The mineralized regions appear elastically inhomogeneous, resembling the pattern of the osteons' lamellae, while Raman and energy-dispersive X-ray images through scanning electron microscopy show an overall uniform distribution of the mineral content, suggesting that other structural factors are responsible for lamellar micromechanical heterogeneity. These results, besides giving an important insight into cortical bone tissue properties, highlight the potential of BRaMS to access the origin of anisotropic mechanical properties, which are almost ubiquitous in other biological tissues.
Collapse
Affiliation(s)
- M. Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - A. Di Michele
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Mattarelli
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - S. Caponi
- Istituto Officina Dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - D. Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - S. Brogini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, Bologna 40136, Italy
| | - F. Masia
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - P. Borri
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - W. Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - F. Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - A. Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - D. Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
- CEMIN - Center of Excellence for Innovative Nanostructured Material, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
17
|
Miller M, Ayoub D. Metabolic Bone Disease of Infancy in the Offspring of Mothers with Bariatric Surgery: A Series of 5 Infants In Contested Cases of Child Abuse. Clin Nutr ESPEN 2022; 48:227-233. [DOI: 10.1016/j.clnesp.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
18
|
Tran TN H T, Xu K, Le LH, Ta D. Signal Processing Techniques Applied to Axial Transmission Ultrasound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:95-117. [DOI: 10.1007/978-3-030-91979-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Pulse-Echo Measurements of Bone Tissues. Techniques and Clinical Results at the Spine and Femur. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:145-162. [DOI: 10.1007/978-3-030-91979-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Liu W, Song H, Man S, Li H, Zhang L. Analysis of Bone Strength and Bone Turnover Markers in Ankylosing Spondylitis with Radiological Hip Involvement. Med Sci Monit 2021; 27:e932992. [PMID: 34175885 PMCID: PMC8247457 DOI: 10.12659/msm.932992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Limited clinical data are available on bone loss in ankylosing spondylitis (AS) patients with hip involvement, especially for bone strength. The purpose of this study was to analyze bone strength and bone turnover markers in AS patients with hip involvement. Material/Methods The stiffness index (SI) calculated by quantitative ultrasound (QUS) was used to compare the bone strength between patients with AS with radiographic hip involvement (RHI-AS, BASRI-hip ≥2) and those without radiographic hip involvement (WORHI-AS, BASRI-hip ≤1). The Spearman correlation test was used to evaluate the association between SI and bone turnover markers [TP1NP, OC, β-CTx, 25(OH)VD3, and PTH]. Results RHI-AS (BASRI-hip ≥2) patients accounted for 52.2% (177/339) of all patients. There was no significant difference in most of the basic clinical features between RHI-AS and WORHI-AS patients, except for age and BMI. After adjusting for confounding factors (age and BMI), the stiffness index (SI) of RHI-AS patients was significantly lower than that of WORHI-AS patients (ORadj=0.982, 95% CIadj=0.968~0.997, Padj=0.017). The Z scores calculated by SI were lower in RHI-AS patients (ORadj=0.802, 95% CIadj=0.679~0.949, Padj=0.01). Among the 5 bone turnover markers in the RHI-AS patients, only 25(OH)VD3 had a correlation with SI (rho=0.279, P=0.001). Conclusions AS patients have lower bone strength once the disease progresses to include radiologic hip involvement. Treatment of vitamin D deficiency may be an effective way to improve bone strength in AS patients with hip involvement.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rheumatology, Beijing Jishuitan Hospital, Beijing, China (mainland)
| | - Hui Song
- Department of Rheumatology, Beijing Jishuitan Hospital, Beijing, China (mainland)
| | - Siliang Man
- Department of Rheumatology, Beijing Jishuitan Hospital, Beijing, China (mainland)
| | - Hongchao Li
- Department of Rheumatology, Beijing Jishuitan Hospital, Beijing, China (mainland)
| | - Liang Zhang
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, China (mainland)
| |
Collapse
|
21
|
Peralta L, Maeztu Redin JD, Fan F, Cai X, Laugier P, Schneider J, Raum K, Grimal Q. Bulk Wave Velocities in Cortical Bone Reflect Porosity and Compression Strength. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:799-808. [PMID: 33341302 DOI: 10.1016/j.ultrasmedbio.2020.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The goal of this study was to evaluate whether ultrasonic velocities in cortical bone can be considered as a proxy for mechanical quality of cortical bone tissue reflected by porosity and compression strength. Micro-computed tomography, compression mechanical testing and resonant ultrasound spectroscopy were used to assess, respectively, porosity, strength and velocity of bulk waves of both shear and longitudinal polarisations propagating along and perpendicular to osteons, in 92 cortical bone specimens from tibia and femur of elderly human donors. All velocities were significantly associated with strength (r = 0.65-0.83) and porosity (r = -0.64 to -0.77). Roughly, according to linear regression models, a decrease in velocity of 100 m/s corresponded to a loss of 20 MPa in strength (which is approximately 10% of the largest strength value) and to an increase in porosity of 5%. These results provide a rationale for the in vivo measurement of one or several velocities for the diagnosis of bone fragility.
Collapse
Affiliation(s)
- Laura Peralta
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, Kings College London, London, United Kingdom.
| | - Juan Deyo Maeztu Redin
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Fan Fan
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France; Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiran Cai
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Pascal Laugier
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Johannes Schneider
- Berlin-Brandenburg School for Regenerative Therapies, Charit-Universittsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charit-Universittsmedizin Berlin, Berlin, Germany
| | - Quentin Grimal
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| |
Collapse
|
22
|
Application of an Improved Ultrasound Full-Waveform Inversion in Bone Quantitative Measurement. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inspired by the large number of applications for symmetric nonlinear equations, an improved full waveform inversion algorithm is proposed in this paper in order to quantitatively measure the bone density and realize the early diagnosis of osteoporosis. The isotropic elastic wave equation is used to simulate ultrasonic propagation between bone and soft tissue, and the Gauss–Newton algorithm based on symmetric nonlinear equations is applied to solve the optimal solution in the inversion. In addition, the authors use several strategies including the frequency-grid multiscale method, the envelope inversion and the new joint velocity–density inversion to improve the result of conventional full-waveform inversion method. The effects of various inversion settings are also tested to find a balanced way of keeping good accuracy and high computational efficiency. Numerical inversion experiments showed that the improved full waveform inversion (FWI) method proposed in this paper shows superior inversion results as it can detect small velocity–density changes in bones, and the relative error of the numerical model is within 10%. This method can also avoid interference from small amounts of noise and satisfy the high precision requirements for quantitative ultrasound measurements of bone.
Collapse
|
23
|
Godebo TR, Jeuland M, Tekle-Haimanot R, Shankar A, Alemayehu B, Assefa G, Whitford G, Wolfe A. Bone quality in fluoride-exposed populations: A novel application of the ultrasonic method. Bone Rep 2020; 12:100235. [PMID: 31890757 PMCID: PMC6933268 DOI: 10.1016/j.bonr.2019.100235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Various studies, mostly with animals, have provided evidence of adverse impacts of fluoride (F-) on bone density, collagen and microstructure, yet its effects on overall bone quality (strength) has not been clearly or extensively characterized in human populations. OBJECTIVE In this observational study, we assessed variation in an integrated measures of bone quality in a population exposed to wide-ranging F- levels (0.3 to 15.5 mg/L) in drinking water, using a novel application of non-ionizing ultrasonic method. METHOD We collected 871 speed of sound (SOS) measurements from 341 subjects residing in 25 communities, aged 10-70 years (188 males and 153 females). All subjects received scans of the cortical radius and tibia, and adults over the age of 19 received an additional scan of the phalanx. Associations between F- in drinking water and 24-h urine samples, and SOS as a measure of bone quality, were evaluated in bivariate and multivariable regressions adjusting for age, sex, BMI, smoking, and toothpaste use. RESULTS We found negative associations between F- exposure and bone quality at all three bones. Adult tibial SOS showed the strongest inverse association with F- exposure, which accounted for 20% of the variance in SOS measures (r = 0.45; n = 199; p < 0.0001). In adjusted analysis, a 1 mg/L increase in F- in drinking water was related to a reduction of 15.8 m/s (95% CI: -21.3 to -10.3), whereas a 1 mg/L increase in 24-h urinary F- (range: 0.04-39.5 mg/L) was linked to a reduction of 8.4 m/s (95% CI: -12.7, -4.12) of adult tibial SOS. Among adolescents, in contrast, weaker and non-significant inverse associations between F- exposure and SOS were found, while age, gender, and BMI were more significant predictors than in adults. CONCLUSIONS These results are indicative of a fluoride-induced deterioration of bone quality in humans, likely reflecting a combination of factors related to SOS: net bone loss, abnormal mineralization and collagen formation, or altered microarchitecture. The portable and low-cost ultrasound technique appears potentially useful for assessment of bone quality, and should be tested in other locations and for other bone-related disorders, to assess the feasibility of its more extensive diagnostic use in hard-to-reach rural regions.
Collapse
Key Words
- BMI, Body Mass Index
- Bone biomarker
- Bone quality
- Ethiopian Rift Valley
- F-, qFluoride
- Fluoride exposure
- IRB, Institutional Review Board
- ISE, Ion Selective Electrode
- MER, Main Ethiopian Rift
- NOAEL, No-Observed-Adverse-Effects-Level
- Quantitative ultrasound
- SOS, Speed of Sound
- Speed of sound
- TISAB, Total Ionic Strength Adjuster Buffer
- U.S. EPA, U.S. Environmental Protection Agency
- U.S. NRC, U.S. National Research Institute
- WHO, World Health Organization
- bw, body weight
- mg/L, milligram per liter
- mg/kg bw/day, milligram per kilogram body weight per day
Collapse
Affiliation(s)
- Tewodros Rango Godebo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Marc Jeuland
- Sanford School of Public Policy, Duke University, Durham, NC 27708 USA
| | - Redda Tekle-Haimanot
- Department of Neurology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Arti Shankar
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Biniyam Alemayehu
- Department of Neurology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getachew Assefa
- Department of Radiology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gary Whitford
- Department of Oral Biology, College of Dental Medicine, Augusta University, Augusta, GA, USA
| | - Amy Wolfe
- Kentucky Geological Survey, University of Kentucky, KY, USA
| |
Collapse
|
24
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
25
|
Grant TM, Diamond LE, Pizzolato C, Killen BA, Devaprakash D, Kelly L, Maharaj JN, Saxby DJ. Development and validation of statistical shape models of the primary functional bone segments of the foot. PeerJ 2020; 8:e8397. [PMID: 32117607 PMCID: PMC7006516 DOI: 10.7717/peerj.8397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction Musculoskeletal models are important tools for studying movement patterns, tissue loading, and neuromechanics. Personalising bone anatomy within models improves analysis accuracy. Few studies have focused on personalising foot bone anatomy, potentially incorrectly estimating the foot’s contribution to locomotion. Statistical shape models have been created for a subset of foot-ankle bones, but have not been validated. This study aimed to develop and validate statistical shape models of the functional segments in the foot: first metatarsal, midfoot (second-to-fifth metatarsals, cuneiforms, cuboid, and navicular), calcaneus, and talus; then, to assess reconstruction accuracy of these shape models using sparse anatomical data. Methods Magnetic resonance images of 24 individuals feet (age = 28 ± 6 years, 52% female, height = 1.73 ± 0.8 m, mass = 66.6 ± 13.8 kg) were manually segmented to generate three-dimensional point clouds. Point clouds were registered and analysed using principal component analysis. For each bone segment, a statistical shape model and principal components were created, describing population shape variation. Statistical shape models were validated by assessing reconstruction accuracy in a leave-one-out cross validation. Statistical shape models were created by excluding a participant’s bone segment and used to reconstruct that same excluded bone using full segmentations and sparse anatomical data (i.e. three discrete points on each segment), for all combinations in the dataset. Tali were not reconstructed using sparse anatomical data due to a lack of externally accessible landmarks. Reconstruction accuracy was assessed using Jaccard index, root mean square error (mm), and Hausdorff distance (mm). Results Reconstructions generated using full segmentations had mean Jaccard indices between 0.77 ± 0.04 and 0.89 ± 0.02, mean root mean square errors between 0.88 ± 0.19 and 1.17 ± 0.18 mm, and mean Hausdorff distances between 2.99 ± 0.98 mm and 6.63 ± 3.68 mm. Reconstructions generated using sparse anatomical data had mean Jaccard indices between 0.67 ± 0.06 and 0.83 ± 0.05, mean root mean square error between 1.21 ± 0.54 mm and 1.66 ± 0.41 mm, and mean Hausdorff distances between 3.21 ± 0.94 mm and 7.19 ± 3.54 mm. Jaccard index was higher (P < 0.01) and root mean square error was lower (P < 0.01) in reconstructions from full segmentations compared to sparse anatomical data. Hausdorff distance was lower (P < 0.01) for midfoot and calcaneus reconstructions using full segmentations compared to sparse anatomical data. Conclusion For the first time, statistical shape models of the primary functional segments of the foot were developed and validated. Foot segments can be reconstructed with minimal error using full segmentations and sparse anatomical landmarks. In future, larger training datasets could increase statistical shape model robustness, extending use to paediatric or pathological populations.
Collapse
Affiliation(s)
- Tamara M Grant
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Laura E Diamond
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Claudio Pizzolato
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Bryce A Killen
- Human Movement Biomechanics Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Daniel Devaprakash
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Luke Kelly
- School of Human Movement and Nutritional Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Jayishni N Maharaj
- School of Human Movement and Nutritional Sciences, University of Queensland, Brisbane, QLD, Australia
| | - David J Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
26
|
Raimann A, Mehany SN, Feil P, Weber M, Pietschmann P, Boni-Mikats A, Klepochova R, Krššák M, Häusler G, Schneider J, Patsch JM, Raum K. Decreased Compressional Sound Velocity Is an Indicator for Compromised Bone Stiffness in X-Linked Hypophosphatemic Rickets (XLH). Front Endocrinol (Lausanne) 2020; 11:355. [PMID: 32582030 PMCID: PMC7296046 DOI: 10.3389/fendo.2020.00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Objectives: To assess the diagnostic potential of bidirectional axial transmission (BDAT) ultrasound, and high-resolution peripheral quantitative computed tomography (HR-pQCT) in X-linked hypophosphatemia (XLH, OMIM #307800), a rare genetic disorder of phosphate metabolism caused by mutations in the PHEX gene. Methods: BDAT bone ultrasound was performed at the non-dominant distal radius (33% relative to distal head) and the central left tibia (50%) in eight XLH patients aged between 4.2 and 20.8 years and compared to twenty-nine healthy controls aged between 5.8 and 22.4 years. In eighteen controls, only radius measurements were performed. Four patients and four controls opted to participate in HR-pQCT scanning of the ultradistal radius and tibia. Results: Bone ultrasound was feasible in patients and controls as young as 4 years of age. The velocity of the first arriving signal (νFAS) in BDAT ultrasound was significantly lower in XLH patients compared to healthy controls: In the radius, mean νFAS of XLH patients and controls was 3599 ± 106 and 3866 ± 142 m/s, respectively (-6.9%; p < 0.001). In the tibia, it was 3578 ± 129 and 3762 ± 124 m/s, respectively (-4.9%; p = 0.006). HR-pQCT showed a higher trabecular thickness in the tibia of XLH patients (+16.7%; p = 0.021). Conclusions: Quantitative bone ultrasound revealed significant differences in cortical bone quality of young XLH patients as compared to controls. Regular monitoring of XLH patients by a radiation-free technology such as BDAT might provide valuable information on bone quality and contribute to the optimization of treatment. Further studies are needed to establish this affordable and time efficient method in the XLH patients.
Collapse
Affiliation(s)
- Adalbert Raimann
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sarah N. Mehany
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Patricia Feil
- Division of Pediatric Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Andrea Boni-Mikats
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Radka Klepochova
- Department of Biomedical Imaging and Image-guided Therapy, The High Field MR Centre, Vienna, Austria
| | - Martin Krššák
- Department of Biomedical Imaging and Image-guided Therapy, The High Field MR Centre, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging—MOLIMA, Vienna, Austria
| | - Gabriele Häusler
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes Schneider
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Janina M. Patsch
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- *Correspondence: Janina M. Patsch
| | - Kay Raum
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
27
|
Miller M, Stolfi A, Ayoub D. Findings of metabolic bone disease in infants with unexplained fractures in contested child abuse investigations: a case series of 75 infants. J Pediatr Endocrinol Metab 2019; 32:1103-1120. [PMID: 31600139 DOI: 10.1515/jpem-2019-0093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022]
Abstract
Background Infants who present with multiple unexplained fractures (MUF) are often diagnosed as victims of child abuse when parents deny wrongdoing and cannot provide a plausible alternative explanation. Herein we describe evidence of specific and commonly overlooked radiographic abnormalities and risk factors that suggest a medical explanation in such cases. Methods We evaluated such infants in which we reviewed the radiographs for signs of poor bone mineralization. We reviewed medical, pregnancy and family histories. Results Seventy-five of 78 cases showed poor bone mineralization with findings of healing rickets indicating susceptibility to fragility fractures that could result from a wide variety of causes other than child abuse. We found risk factors that could explain the poor bone mineralization: maternal and infant vitamin D deficiency (VDD), decreased fetal bone loading, prematurity and others. Most infants had more than one risk factor indicating that this bone disorder is a multifactorial disorder that we term metabolic bone disease of infancy (MBDI). Maternal and infant VDD were common. When tested, 1,25-dihydroxyvitamin D levels were often elevated, indicating metabolic bone disease. Conclusions Child abuse is sometimes incorrectly diagnosed in infants with MUF. Appreciation of the radiographic signs of MBDI (healing rickets), risk factors for MBDI and appropriate laboratory testing will improve diagnostic accuracy in these cases.
Collapse
Affiliation(s)
- Marvin Miller
- Dayton Children's Hospital, Department of Medical Genetics, 1 Children's Plaza, Dayton, OH 45404, USA.,Department of Pediatrics, Ob/Gyn and Biomedical Engineering, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Adrienne Stolfi
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - David Ayoub
- Clinical Radiologists, SC, Springfield, IL, USA
| |
Collapse
|
28
|
Rodriguez-Sendra J, Jimenez N, Pico R, Faus J, Camarena F. Monitoring the Setting of Calcium Sulfate Bone-Graft Substitute Using Ultrasonic Backscattering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1658-1666. [PMID: 31283503 DOI: 10.1109/tuffc.2019.2926827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a method to monitor the setting process of bone-graft substitutes (calcium sulfate) using ultrasonic backscattering techniques. Analyzing the backscattered fields using a pulse-echo technique, we show that it is possible to dynamically describe the acoustic properties of the material which are linked to its setting state. Several experiments were performed to control the setting process of calcium sulfate using a 3.5-MHz transducer. The variation of the apparent integrated backscatter (AIB) with time during the setting process is analyzed and compared with measurements of the speed of sound (SOS) and temperature of the sample. The correlation of SOS and AIB allows us to clearly identify two different states of the samples, liquid and solid, in addition to the transition period. Results show that using backscattering analysis, the setting state of the material can be estimated with a threshold of 15 dB. This ultrasonic technique is indeed the first step to develop real-time monitoring systems for time-varying complex media as those present in bone regeneration for dental implantology applications.
Collapse
|
29
|
Li Y, Li B, Li Y, Liu C, Xu F, Zhang R, Ta D, Wang W. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone. ULTRASONIC IMAGING 2019; 41:271-289. [PMID: 31307317 DOI: 10.1177/0161734619862190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultrasonic backscatter technique holds the promise of characterizing bone density and microstructure. This paper conducts ultrasonic backscatter parametric imaging based on measurements of apparent integrated backscatter (AIB), spectral centroid shift (SCS), frequency slope of apparent backscatter (FSAB), and frequency intercept of apparent backscatter (FIAB) for representing trabecular bone mass and microstructure. We scanned 33 bovine trabecular bone samples using a 7.5 MHz focused transducer in a 20 mm × 20 mm region of interest (ROI) with a step interval of 0.05 mm. Images based on the ultrasonic backscatter parameters (i.e., AIB, SCS, FSAB, and FIAB) were constructed to compare with photographic images of the specimens as well as two-dimensional (2D) μ-CT images from approximately the same depth and location of the specimen. Similar structures and trabecular alignments can be observed among these images. Statistical analyses demonstrated that the means and standard deviations of the ultrasonic backscatter parameters exhibited significant correlations with bone density (|R| = 0.45-0.78, p < 0.01) and bone microstructure (|R| = 0.44-0.87, p < 0.001). Some bovine trabecular bone microstructure parameters were independently associated with the ultrasonic backscatter parameters (ΔR2 = 4.18%-44.45%, p < 0.05) after adjustment for bone apparent density (BAD). The results show that ultrasonic backscatter parametric imaging can provide a direct view of the trabecular microstructure and can reflect information about the density and microstructure of trabecular bone.
Collapse
Affiliation(s)
- Ying Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Boyi Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yifang Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Chengcheng Liu
- 2 Institute of Acoustics, Tongji University, Shanghai, China
| | - Feng Xu
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Rong Zhang
- 3 Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Dean Ta
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
- 4 Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
- 5 Human Phenome Institute, Fudan University, Shanghai, China
| | - Weiqi Wang
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Grimal Q, Laugier P. Quantitative Ultrasound Assessment of Cortical Bone Properties Beyond Bone Mineral Density. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Agreement Between Dual-Energy X-Ray Absorptiometry and Quantitative Ultrasound to Evaluate Bone Health in Adolescents: The PRO-BONE Study. Pediatr Exerc Sci 2018; 30:466-473. [PMID: 29804497 DOI: 10.1123/pes.2017-0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE The present study aims to investigate the association between dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) parameters and the intermethods agreement in active males. METHODS In this cross-sectional study, bone health (by DXA and calcaneal QUS), physical activity (by accelerometers), and anthropometrics measurements were assessed in 117 active adolescents (12-14 y old). Bivariate correlation coefficients were calculated to assess the relationships between DXA standard regions of interest and QUS parameters. Intraclass correlation coefficients and Bland-Altman plots were used to assess the level of agreement between bone mineral content regions derived from DXA and stiffness index. The measurements were z score transformed for comparison. RESULTS Most QUS parameters were positive and significantly correlated with DXA outcomes (stiffness index: r = .43-.52; broadband ultrasound attenuation: r = .50-.58; speed of sound: r = .25-.27) with the hip showing the highest correlations. Moreover, the present study found fair to good intraclass correlation coefficients of agreement (.60-.68) between DXA and QUS to assess bone health. The Bland-Altman analysis showed a limited percentage of outliers (3.2%-8.6%). CONCLUSION QUS device could represent an acceptable alternative method to assess bone health in active adolescent males.
Collapse
|
32
|
Bai L, Xu K, Li D, Ta D, Le LH, Wang W. Fatigue evaluation of long cortical bone using ultrasonic guided waves. J Biomech 2018; 77:83-90. [PMID: 29961583 DOI: 10.1016/j.jbiomech.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Bone fatigue fracture is a progressive disease due to stress concentration. This study aims to evaluate the long bone fatigue damage using the ultrasonic guided waves. Two-dimensional finite-difference time-domain method was employed to simulate the ultrasonic guided wave propagation in the long bone under different elastic modulus. The experiment was conducted on a 3.8 mm-thick bovine bone plate. The phase velocities of two fundamental guided modes, A1 and S1, were measured by using the axial transmission technique. Simulation shows that the phase velocities of guided modes A1 and S1 decrease with the increasing of the fatigue damage. After 20,000 cycles of fatigue loading on the bone plate, the average phase velocities of A1 and S1 modes were 6.6% and 5.3% respectively, lower than those of the intact bone. The study suggests that ultrasonic guided waves can be potentially used to evaluate the fatigue damage in long bones.
Collapse
Affiliation(s)
- Liang Bai
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Kailiang Xu
- Institut Langevin, ESPCI Paris, CNRS UMR 7587, INSERM U979, 17 Rue Moreau, 75012 Paris, France.
| | - Dan Li
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Weiqi Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Rapid High-Resolution Wavenumber Extraction from Ultrasonic Guided Waves Using Adaptive Array Signal Processing. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Ellanti P, Mohan K, Moriarity A, Hogan N, McCarthy T. Canal to diaphysis ratio as a risk factor for hip fractures and hip fracture pattern. SICOT J 2017; 3:64. [PMID: 29125120 PMCID: PMC5680670 DOI: 10.1051/sicotj/2017051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/25/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction: Osteoporosis and related fractures constitute a significant burden on modern healthcare. The standard method of diagnosing osteoporosis with a dual-energy X-ray absorptiometry (DXA) scan is limited by accessibility and expense. The thickness of the cortex of the proximal femur on plain radiographs has been suggested to be a method for indicating osteoporosis and as a risk factor of hip fractures in the elderly. Methods: A retrospective study was undertaken to assess the usefulness of the canal-diaphysis ratio (CDR) as a risk factor for developing a hip fracture, excluding patients presenting under 50 years old, following high-energy trauma or pathological fractures. The CDR was measured in 84 neck of femur (NOF) fracture patients and 84 intertrochanteric hip fracture patients, and these were subsequently compared to the CDR of 84 patients without a hip fracture. Measurements were taken on two occasions by two members of the orthopaedic team, so as to assess the test’s inter- and intraobserver reliability. Results: In comparison to those without a fracture, there was a significant difference in the CDR of patients with a NOF fracture (P < 0.0001) and intertrochanteric fracture (P < 0.0001). Furthermore, the odds of having a CDR above 60.67 and 64.41 were significantly higher in the NOF (OR = 2.214, P = 0.0129) and intertrochanteric fracture (OR = 32.27, P < 0.0001) groups respectively, when compared to the non-fractured group. The analysis of the test’s inter- and intraobserver reliability showed strong levels of reproducibility. Discussion: We concluded that a raised CDR was associated with an increased incidence of NOF and intertrochanteric hip fracture. Measuring the CDR can thus be considered as a reproducible and inexpensive method of identifying elderly patients at risk of hip fractures.
Collapse
Affiliation(s)
- Prasad Ellanti
- Department of Trauma & Orthopaedics, Saint James's Hospital, James's Street, Dublin DO8NHY1, Ireland
| | - Kunal Mohan
- Department of Trauma & Orthopaedics, Saint James's Hospital, James's Street, Dublin DO8NHY1, Ireland
| | - Andrew Moriarity
- Department of Trauma & Orthopaedics, Saint James's Hospital, James's Street, Dublin DO8NHY1, Ireland
| | - Niall Hogan
- Department of Trauma & Orthopaedics, Saint James's Hospital, James's Street, Dublin DO8NHY1, Ireland
| | - Tom McCarthy
- Department of Trauma & Orthopaedics, Saint James's Hospital, James's Street, Dublin DO8NHY1, Ireland
| |
Collapse
|
35
|
Bernard S, Monteiller V, Komatitsch D, Lasaygues P. Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging. ACTA ACUST UNITED AC 2017; 62:7011-7035. [DOI: 10.1088/1361-6560/aa7e5a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 2017; 28:2275-2291. [PMID: 28378291 DOI: 10.1007/s00198-017-4019-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Although musculoskeletal diseases such as osteoporosis are diagnosed and treatment outcome is evaluated based mainly on routine clinical outcomes of bone mineral density (BMD) by DXA and biochemical markers, it is recognized that these two indicators, as valuable as they have proven to be in the everyday clinical practice, do not fully account for manifested bone strength. Thus, the term bone quality was introduced, to complement considerations based on bone turnover rates and BMD. Bone quality is an "umbrella" term that incorporates the structural and material/compositional characteristics of bone tissue. Vibrational spectroscopic techniques such as Fourier transform infrared microspectroscopy (FTIRM) and imaging (FTIRI), and Raman spectroscopy, are suitable analytical tools for the determination of bone quality as they provide simultaneous, quantitative, and qualitative information on all main bone tissue components (mineral, organic matrix, tissue water), in a spatially resolved manner. Moreover, the results of such analyses may be readily combined with the outcomes of other techniques such as histology/histomorphometry, small angle X-ray scattering, quantitative backscattered electron imaging, and nanoindentation.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| |
Collapse
|
37
|
Cesar R, Leivas TP, Pereira CAM, Boffa RS, Guarniero R, Reiff RBDM, Mandeli Netto A, Fortulan CA, Rollo JMDDA. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus. ACTA ACUST UNITED AC 2017. [DOI: 10.1590/2446-4740.04116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Roberto Guarniero
- University of São Paulo, Brazil; National Institute of Science and Technology in Biofabrication, Brazil
| | | | | | | | | |
Collapse
|
38
|
Pezzuti IL, Kakehasi AM, Filgueiras MT, de Guimarães JA, de Lacerda IAC, Silva IN. Imaging methods for bone mass evaluation during childhood and adolescence: an update. J Pediatr Endocrinol Metab 2017; 30:485-497. [PMID: 28328530 DOI: 10.1515/jpem-2016-0252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 11/15/2022]
Abstract
The objective of the work was to prepare an update on imaging methods for bone evaluation during childhood and adolescence. The text was based on original and review articles on imaging methods for clinical evaluation of bone mass in children and adolescents up to 20 years old. They were selected from BIREME and PUBMED by means of the following keywords: bone density; osteoporosis/diagnosis; densitometry; tomography; ultrasonography; magnetic resonance imaging; and radiogrammetry and published in Portuguese or English, in the last 10 years (2006-2016). The article was organized into topics with the description of peculiarities, advantages and disadvantages of each imaging method and their possible clinical applicability. Despite the emergence of new technologies, dual energy X-ray absorptiometry (DXA) remains the gold standard method for low bone mass diagnosis in all age groups. However, interpretation is complex in children and adolescents and demands skilled people. Quantitative computed tomography (QCT) [central QCT, peripheral QCT (pQCT) and high resolution-pQCT (HR-pQCT)] and magnetic resonance imaging (MRI) evaluate real bone density, but are not yet available for routine use. Quantitative bone ultrasound (QUS) shows good perspectives for its use in primary prevention actions. Automated radiogrammetry shows promise as a method able to flag individuals who might benefit from a complete bone assessment, but the clinical value of the measures still needs to be established.
Collapse
Affiliation(s)
- Isabela Leite Pezzuti
- Department of Pediatrics, Division of Pediatric Endocrinology, Faculdade de Medicina/Hospital das Clínicas, Universidade Federal de Minas Gerais (UFMG) Av. Alfredo Balena 190, s/267 30130-100, Belo Horizonte, MG
| | - Adriana Maria Kakehasi
- Department of Locomotor System, Faculdade de Medicina/Hospital das Clínicas niversidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG
| | - Maria Tereza Filgueiras
- Pediatric Imaging, Faculdade de Medicina/Hospital das Clínicas Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG
| | - Juliana Albano de Guimarães
- Research initiation student, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG
| | | | - Ivani Novato Silva
- Department of Pediatrics, Head of Division of Pediatric Endocrinology, Faculdade de Medicina/Hospital das Clínicas Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG
| |
Collapse
|
39
|
Casciaro S, Peccarisi M, Pisani P, Franchini R, Greco A, De Marco T, Grimaldi A, Quarta L, Quarta E, Muratore M, Conversano F. An Advanced Quantitative Echosound Methodology for Femoral Neck Densitometry. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1337-1356. [PMID: 27033331 DOI: 10.1016/j.ultrasmedbio.2016.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
The aim of this paper was to investigate the clinical feasibility and the accuracy in femoral neck densitometry of the Osteoporosis Score (O.S.), an ultrasound (US) parameter for osteoporosis diagnosis that has been recently introduced for lumbar spine applications. A total of 377 female patients (aged 61-70 y) underwent both a femoral dual X-ray absorptiometry (DXA) and an echographic scan of the proximal femur. Recruited patients were sub-divided into a reference database used for ultrasound spectral model construction and a study population for repeatability assessments and accuracy evaluations. Echographic images and radiofrequency signals were analyzed through a fully automatic algorithm that performed a series of combined spectral and statistical analyses, providing as a final output the O.S. value of the femoral neck. Assuming DXA as a gold standard reference, the accuracy of O.S.-based diagnoses resulted 94.7%, with k = 0.898 (p < 0.0001). Significant correlations were also found between O.S.-estimated bone mineral density and corresponding DXA values, with r(2) up to 0.79 and root mean square error = 5.9-7.4%. The reported accuracy levels, combined with the proven ease of use and very good measurement repeatability, provide the adopted method with a potential for clinical routine application in osteoporosis diagnosis.
Collapse
Affiliation(s)
- Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
| | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Roberto Franchini
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | | | - Antonella Grimaldi
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Laura Quarta
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Eugenio Quarta
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Maruizio Muratore
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | | |
Collapse
|
40
|
Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones. MATERIALS 2016; 9:ma9030205. [PMID: 28773331 PMCID: PMC5456720 DOI: 10.3390/ma9030205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 01/03/2023]
Abstract
Computational studies on the evaluation of bone status in cases of pathologies have gained significant interest in recent years. This work presents a parametric and systematic numerical study on ultrasound propagation in cortical bone models to investigate the effect of changes in cortical porosity and the occurrence of large basic multicellular units, simply called non-refilled resorption lacunae (RL), on the velocity of the first arriving signal (FAS). Two-dimensional geometries of cortical bone are established for various microstructural models mimicking normal and pathological tissue states. Emphasis is given on the detection of RL formation which may provoke the thinning of the cortical cortex and the increase of porosity at a later stage of the disease. The central excitation frequencies 0.5 and 1 MHz are examined. The proposed configuration consists of one point source and multiple successive receivers in order to calculate the FAS velocity in small propagation paths (local velocity) and derive a variation profile along the cortical surface. It was shown that: (a) the local FAS velocity can capture porosity changes including the occurrence of RL with different number, size and depth of formation; and (b) the excitation frequency 0.5 MHz is more sensitive for the assessment of cortical microstructure.
Collapse
|
41
|
Dhainaut A, Hoff M, Syversen U, Haugeberg G. Technologies for assessment of bone reflecting bone strength and bone mineral density in elderly women: an update. ACTA ACUST UNITED AC 2016; 12:209-16. [PMID: 26900798 DOI: 10.2217/whe.15.94] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reduced bone mineral density is a strong risk factor for fracture. The WHO's definition of osteoporosis is based on bone mineral density measurements assessed by dual x-ray absorptiometry. Several on other techniques than dual x-ray absorptiometry have been developed for quantitative assessment of bone, for example, quantitative ultrasound and digital x-ray radiogrammetry. Some of these techniques may also capture other bone properties than bone mass that contribute to bone strength, for example, bone porosity and microarchitecture. In this article we give an update on technologies which are available for evaluation primarily of bone mass and bone density, but also describe methods which currently are validated or are under development for quantitative assessment of other bone properties.
Collapse
Affiliation(s)
- Alvilde Dhainaut
- Department of Neuroscience (INM) Norwegian University of Science & Technology (NTNU), Trondheim, Norway.,Department of Public Health & General Practice (ISM), Norwegian University of Science & Technology, Trondheim Norway
| | - Mari Hoff
- Department of Public Health & General Practice (ISM), Norwegian University of Science & Technology, Trondheim Norway.,Department of Rheumatology, St Olav's Hospital, Trondheim, Norway
| | - Unni Syversen
- Department of Cancer Research & Molecular Medicine (IKM), NTNU, Trondheim, Norway.,Department of Endocrinology, St. Olav's Hospital, Norway
| | - Glenn Haugeberg
- Department of Neuroscience (INM) Norwegian University of Science & Technology (NTNU), Trondheim, Norway.,Department of Rheumatology, Hospital of Southern Norway, Kristiansand S, Norway
| |
Collapse
|
42
|
Tsourdi E, Wallaschofski H, Rauner M, Nauck M, Pietzner M, Rettig R, Ittermann T, Völzke H, Völker U, Hofbauer LC, Hannemann A. Thyrotropin serum levels are differentially associated with biochemical markers of bone turnover and stiffness in women and men: results from the SHIP cohorts. Osteoporos Int 2016; 27:719-27. [PMID: 26264603 DOI: 10.1007/s00198-015-3276-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/30/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED In two large German population-based cohorts, we showed positive associations between serum thyrotropin (TSH) concentrations and the Fracture Risk Assessment score (FRAX) in men and positive associations between TSH concentrations and bone turnover markers in women. INTRODUCTION The role of thyroid hormones on bone stiffness and turnover is poorly defined. Existing studies are confounded by differences in design and small sample size. We assessed the association between TSH serum concentrations and bone stiffness and turnover in the SHIP cohorts, which are two population-based cohorts from a region in Northern Germany comprising 2654 men and women and 3261 men and women, respectively. METHODS We calculated the bone stiffness index using quantitative ultrasound (QUS) at the calcaneus, employed FRAX score for assessment of major osteoporotic fractures, and measured bone turnover markers, N-terminal propeptide of type I procollagen (P1NP), bone-specific alkaline phosphatase (BAP), osteocalcin, and type I collagen cross-linked C-telopeptide (CTX) in all subjects and sclerostin in a representative subgroup. RESULTS There was no association between TSH concentrations and the stiffness index in both genders. In men, TSH correlated positively with the FRAX score both over the whole TSH range (p < 0.01) and within the reference TSH range (p < 0.01). There were positive associations between TSH concentrations and P1NP, BAP, osteocalcin, and CTX (p < 0.01) in women but not in men. There was no significant association between TSH and sclerostin levels. CONCLUSIONS TSH serum concentrations are associated with gender-specific changes in bone turnover and stiffness.
Collapse
Affiliation(s)
- E Tsourdi
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - H Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- Schwerpunktpraxis für Diabetes und Hormonerkrankungen, Erfurt, Germany
| | - M Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - M Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - M Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - R Rettig
- Institute of Physiology, University Medicine Greifswald, Greifswald, Karlsburg, Germany
| | - T Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - U Völker
- Functional Genomics Laboratory, University Medicine Greifswald, Greifswald, Germany
| | - L C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.
| | - A Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
43
|
Xu W, Xu J, Zhao J, Sun J. Quantitative study of osteoporosis model based on synchrotron radiation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6378-81. [PMID: 26737752 DOI: 10.1109/embc.2015.7319852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate the changes of different periods of primary osteoporosis, we made quantitative analysis of osteoporosis using synchrotron radiation computed tomography (SRCT), together with histomorphometry analysis and finite element analysis (FEA). Tibias, femurs and lumbar vertebras were dissected from sham-ovariectomy rats and ovariectomized rats suffering from osteoporosis at certain time points. The samples were scanned by SRCT and then FEA was applied based on reconstructed slices. Histomorphometry analysis showed that the structure of some trabecular in osteoporosis degraded as the bone volume decreased, for femurs, the bone volume fraction (BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μm to 97.09μm) and the reduction of the number of trabecular (from 7.99 mm(-1) to 5.97mm(-1)). Simulation of various mechanical tests indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness decreased from 1770.96 Fμm(-1) to 697.41 Fμm(-1), and it matched the histomorphometry analysis. This study suggested that the combination of both analysis could quantitatively analyze the bone strength in good accuracy.
Collapse
|
44
|
Casciaro S, Conversano F, Pisani P, Muratore M. New perspectives in echographic diagnosis of osteoporosis on hip and spine. ACTA ACUST UNITED AC 2015; 12:142-50. [PMID: 26604940 DOI: 10.11138/ccmbm/2015.12.2.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently, the accepted "gold standard" method for bone mineral density (BMD) measurement and osteoporosis diagnosis is dual-energy X-ray absorptiometry (DXA). However, actual DXA effectiveness is limited by several factors, including intrinsic accuracy uncertainties and possible errors in patient positioning and/or post-acquisition data analysis. DXA employment is also restricted by the typical issues related to ionizing radiation employment (high costs, need of dedicated structures and certified operators, unsuitability for population screenings). The only commercially-available alternative to DXA is represented by "quantitative ultrasound" (QUS) approaches, which are radiation-free, cheaper and portable, but they cannot be applied on the reference anatomical sites (lumbar spine and proximal femur). Therefore, their documented clinical usefulness is restricted to calcaneal applications on elderly patients (aged over 65 y), in combination with clinical risk factors and only for the identification of healthy subjects at low fracture risk. Literature-reported studies performed some QUS measurements on proximal femur, but their clinical translation is mostly hindered by intrinsic factors (e.g., device bulkiness). An innovative ultrasound methodology has been recently introduced, which performs a combined analysis of B-mode images and corresponding "raw" radiofrequency signals acquired during an echographic scan of the target reference anatomical site, providing two novel parameters: Osteoporosis Score and Fragility Score, indicative of BMD level and bone strength, respectively. This article will provide a brief review of the available systems for osteoporosis diagnosis in clinical routine contexts, followed by a synthesis of the most promising research results on the latest ultrasound developments for early osteoporosis diagnosis and fracture prevention.
Collapse
Affiliation(s)
- Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Maurizio Muratore
- OU of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| |
Collapse
|
45
|
Potsika VT, Grivas KN, Gortsas T, Protopappas VC, Polyzos DK, Raum K, Fotiadis DI. Ultrasound propagation in cortical bone: Axial transmission and backscattering simulations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1456-1459. [PMID: 26736544 DOI: 10.1109/embc.2015.7318644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cortical bone is a heterogeneous, composite medium with a porosity from 5-10%. The characterization of cortical bone using ultrasonic techniques is a complicated procedure especially in numerical studies as several assumptions must be made to describe the concentration and size of pores. This study presents numerical simulations of ultrasound propagation in two-dimensional numerical models of cortical bone to investigate the effect of porosity on: a) the propagation of the first arriving signal (FAS) velocity using the axial transmission method, and b) the displacement and scattering amplitude in the backward direction. The excitation frequency 1 MHz was used and different receiving positions were examined to provide a variation profile of the examined parameters along cortical bone. Cortical porosity was simulated using ellipsoid scatterers and the concentrations of 0-10% were examined. The results indicate that the backscattering method is more appropriate for the evaluation of cortical porosity in comparison to the axial transmission method.
Collapse
|
46
|
Dhainaut A, Daibes K, Odinsson A, Hoff M, Syversen U, Haugeberg G. Exploring the relationship between bone density and severity of distal radius fragility fracture in women. J Orthop Surg Res 2014; 9:57. [PMID: 25030810 PMCID: PMC4423629 DOI: 10.1186/s13018-014-0057-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/25/2014] [Indexed: 11/19/2022] Open
Abstract
Background Bone mineral density (BMD) has been shown to be a consistent and independent risk factor for distal radius fracture. Inconsistent data have been reported on the association between BMD and severity of distal radius fracture. Our primary aim was to explore if there is an association between cortical BMD at the hand and the severity of fragility distal radius fracture. Methods Consecutively recruited females aged ≥50 years with fragility fracture at the distal radius (n = 110) from a county hospital were included. Cortical hand BMD was assessed by the digital X-ray radiogrammetry (DXR) method. X-rays of the fracture were scored by experienced orthopedic surgeons for fracture severity according to the Müller AO classification of long bones and radiographic parameters such as ulnar variance and dorsal angle. Results A weak association between lower DXR BMD and increased ulnar variance and dorsal angle was found but not with the AO scoring system for fracture type. A history of glucocorticoid (GC) use but not DXR-BMD was found to be significantly associated with the presence of having an intra- or extra-articular fracture. Conclusion Our data indicate that bone material properties which are impaired by GC use are more important for fracture severity than BMD.
Collapse
Affiliation(s)
- Alvilde Dhainaut
- INM Norwegian University of Science and Technology, Trondheim, 7491, Norway. .,MTFS-Department of Neuroscience, Division of Rheumatology, University Hospital of Trondheim, Norwegian University of Science and Technology, Trondheim, 7489, Norway.
| | - Kamil Daibes
- Department of Orthopedic Surgery, Sørlandet Hospital, Kristiansand, S 4604, Norway.
| | - Adalsteinn Odinsson
- INM Norwegian University of Science and Technology, Trondheim, 7491, Norway. .,Department of Orthopaedic Surgery, St. Olav's Hospital, Trondheim, 7030, Norway.
| | - Mari Hoff
- INM Norwegian University of Science and Technology, Trondheim, 7491, Norway. .,Department of Rheumatology, St. Olav's Hospital, Trondheim, 7030, Norway.
| | - Unni Syversen
- Institute of Cancer Research and Molecular Medicine, NTNU, Trondheim, 7491, Norway. .,Department of Endocrinology, St. Olav's Hospital, Trondheim, 7030, Norway.
| | - Glenn Haugeberg
- INM Norwegian University of Science and Technology, Trondheim, 7491, Norway. .,Department of Rheumatology, Sørlandet Hospital, Kristiansand, S 4604, Norway.
| |
Collapse
|