1
|
Sherman KM, Silveira CJ, Yan M, Yu L, Leon A, Klages K, White LG, Smith HM, Wolff SM, Falck A, Muneoka K, Brunauer R, Gaddy D, Suva LJ, Dawson LA. Male Down syndrome Ts65Dn mice have impaired bone regeneration. Bone 2024; 192:117374. [PMID: 39675408 DOI: 10.1016/j.bone.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Trisomy of human chromosome 21 (Ts21) individuals present with a spectrum of low bone mineral density (BMD) that predisposes this vulnerable group to skeletal injuries. To determine the bone regenerative capacity of Down syndrome (DS) mice, male and female Dp16 and Ts65Dn DS mice underwent amputation of the digit tip (the terminal phalanx (P3)). This is a well-established mammalian model of bone regeneration that restores the amputated skeletal segment and all associated soft tissues. P3 amputation was performed in 8-week-old male and female DS mice and WT controls and followed by in vivo μCT, histology and immunofluorescence. Following P3 amputation, the bone degradation phase was attenuated in both Dp16 and Ts65Dn males. In Dp16 males, P3 regeneration was delayed but complete by 63 days post amputation (DPA); however, male Ts65Dn exhibited attenuated regeneration by 63 DPA. In both Dp16 and Ts65Dn female DS mice, P3 regenerates were indistinguishable from WT by 42 DPA. In Ts65Dn males, osteoclasts and eroded bone surface were significantly reduced, and osteoblast number significantly decreased in the regenerating digit. In Ts65Dn females, no significant differences were observed in any osteoclast or osteoblast parameter. Like Ts21 individuals and DS mice with sex differences in bone mass, these data expand the characteristic sexually dimorphism to include bone resorption and regeneration in response to skeletal injury in Ts65Dn mice. These observations suggest that sex differences contribute to the poor bone healing of DS and compound the increased risk of bone injury in the Ts21 population.
Collapse
Affiliation(s)
- Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Catrina J Silveira
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Abigail Leon
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Kasey Klages
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lauren G White
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Sarah M Wolff
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Alyssa Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America; LBG Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| |
Collapse
|
2
|
Pushpakumar S, Singh M, Sen U, Tyagi N, Tyagi SC. The role of the mitochondrial trans-sulfuration in cerebro-cardio renal dysfunction during trisomy down syndrome. Mol Cell Biochem 2024; 479:825-829. [PMID: 37198322 DOI: 10.1007/s11010-023-04761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
One in 700 children is born with the down syndrome (DS). In DS, there is an extra copy of X chromosome 21 (trisomy). Interestingly, the chromosome 21 also contains an extra copy of the cystathionine beta synthase (CBS) gene. The CBS activity is known to contribute in mitochondrial sulfur metabolism via trans-sulfuration pathway. We hypothesize that due to an extra copy of the CBS gene there is hyper trans-sulfuration in DS. We believe that understanding the mechanism of hyper trans-sulfuration during DS will be important in improving the quality of DS patients and towards developing new treatment strategies. We know that folic acid "1-carbon" metabolism (FOCM) cycle transfers the "1-carbon" methyl group to DNA (H3K4) via conversion of s-adenosyl methionine (SAM) to s-adenosyl homocysteine (SAH) by DNMTs (the gene writers). The demethylation reaction is carried out by ten-eleven translocation methylcytosine dioxygenases (TETs; the gene erasers) through epigenetics thus turning the genes off/on and opening the chromatin by altering the acetylation/HDAC ratio. The S-adenosyl homocysteine hydrolase (SAHH) hydrolyzes SAH to homocysteine (Hcy) and adenosine. The Hcy is converted to cystathionine, cysteine and hydrogen sulfide (H2S) via CBS/cystathioneγ lyase (CSE)/3-mercaptopyruvate sulfurtransferase (3MST) pathways. Adenosine by deaminase is converted to inosine and then to uric acid. All these molecules remain high in DS patients. H2S is a potent inhibitor of mitochondrial complexes I-IV, and regulated by UCP1. Therefore, decreased UCP1 levels and ATP production can ensue in DS subjects. Interestingly, children born with DS show elevated levels of CBS/CSE/3MST/Superoxide dismutase (SOD)/cystathionine/cysteine/H2S. We opine that increased levels of epigenetic gene writers (DNMTs) and decreased in gene erasers (TETs) activity cause folic acid exhaustion, leading to an increase in trans-sulphuration by CBS/CSE/3MST/SOD pathways. Thus, it is important to determine whether SIRT3 (inhibitor of HDAC3) can decrease the trans-sulfuration activity in DS patients. Since there is an increase in H3K4 and HDAC3 via epigenetics in DS, we propose that sirtuin-3 (Sirt3) may decrease H3K4 and HDAC3 and hence may be able to decrease the trans-sulfuration in DS. It would be worth to determine whether the lactobacillus, a folic acid producing probiotic, mitigates hyper-trans-sulphuration pathway in DS subjects. Further, as we know that in DS patients the folic acid is exhausted due to increase in CBS, Hcy and re-methylation. In this context, we suggest that folic acid producing probiotics such as lactobacillus might be able to improve re-methylation process and hence may help decrease the trans-sulfuration pathway in the DS patients.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Mahavir Singh
- Department of Physiology, University of Louisville, Louisville, Kentucky, 40202, USA.
- School of Medicine, University of Louisville, Louisville, Kentucky, USA.
| | | | - N Tyagi
- Department of Physiology, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, Louisville, Kentucky, 40202, USA
| |
Collapse
|
3
|
Derry PJ, Liopo AV, Mouli K, McHugh EA, Vo ATT, McKelvey A, Suva LJ, Wu G, Gao Y, Olson KR, Tour JM, Kent TA. Oxidation of Hydrogen Sulfide to Polysulfide and Thiosulfate by a Carbon Nanozyme: Therapeutic Implications with an Emphasis on Down Syndrome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211241. [PMID: 37272655 PMCID: PMC10696138 DOI: 10.1002/adma.202211241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Hydrogen sulfide (H2 S) is a noxious, potentially poisonous, but necessary gas produced from sulfur metabolism in humans. In Down Syndrome (DS), the production of H2 S is elevated and associated with degraded mitochondrial function. Therefore, removing H2 S from the body as a stable oxide could be an approach to reducing the deleterious effects of H2 S in DS. In this report we describe the catalytic oxidation of hydrogen sulfide (H2 S) to polysulfides (HS2+n - ) and thiosulfate (S2 O3 2- ) by poly(ethylene glycol) hydrophilic carbon clusters (PEG-HCCs) and poly(ethylene glycol) oxidized activated charcoal (PEG-OACs), examples of oxidized carbon nanozymes (OCNs). We show that OCNs oxidize H2 S to polysulfides and S2 O3 2- in a dose-dependent manner. The reaction is dependent on O2 and the presence of quinone groups on the OCNs. In DS donor lymphocytes we found that OCNs increased polysulfide production, proliferation, and afforded protection against additional toxic levels of H2 S compared to untreated DS lymphocytes. Finally, in Dp16 and Ts65DN murine models of DS, we found that OCNs restored osteoclast differentiation. This new action suggests potential facile translation into the clinic for conditions involving excess H2 S exemplified by DS.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- EnMed, School of Engineering Medicine, Texas A&M University, 1020 W. Holcombe Boulevard, Houston, Texas, USA
| | - Anton V Liopo
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
| | - Karthik Mouli
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
| | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Smalley-Curl Institute, Rice University, Houston, 77005, Texas, USA
| | - Anh T T Vo
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
| | - Ann McKelvey
- Center for Inflammation and Infectious Disease, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, 77030, Texas, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843, Texas, USA
| | - Gang Wu
- Division of Hematology, Internal Medicine, John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, 77005, Texas, USA
| | - Yan Gao
- Indiana University School of Medicine-South Bend, South Bend, 46617, Indiana, USA
| | - Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, 46617, Indiana, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Smalley-Curl Institute, Rice University, Houston, 77005, Texas, USA
- Welch Institute for Advanced Materials, Rice University, Houston, 77005, Texas, USA
- The NanoCarbon Center, Rice University, Houston, 77005, Texas, USA
| | - Thomas A Kent
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, 6560 Fannin Street, Houston, 77030, Texas, USA
| |
Collapse
|
4
|
Chen Y, Xiao Y, Zhang Y, Wang R, Wang F, Gao H, Liu Y, Zhang R, Sun H, Zhou Z, Wang S, Chen K, Sun Y, Tu M, Li J, Luo Q, Wu Y, Zhu L, Huang Y, Sun X, Guo G, Zhang D. Single-cell landscape analysis reveals systematic senescence in mammalian Down syndrome. Clin Transl Med 2023; 13:e1310. [PMID: 37461266 PMCID: PMC10352595 DOI: 10.1002/ctm2.1310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Down syndrome (DS), which is characterized by various malfunctions, is the most common chromosomal disorder. As the DS population continues to grow and most of those with DS live beyond puberty, early-onset health problems have become apparent. However, the cellular landscape and molecular alterations have not been thoroughly studied. METHODS This study utilized single-cell resolution techniques to examine DS in humans and mice, spanning seven distinct organs. A total of 71 934 mouse and 98 207 human cells were analyzed to uncover the molecular alterations occurring in different cell types and organs related to DS, specifically starting from the fetal stage. Additionally, SA-β-Gal staining, western blot, and histological study were employed to verify the alterations. RESULTS In this study, we firstly established the transcriptomic profile of the mammalian DS, deciphering the cellular map and molecular mechanism. Our analysis indicated that DS cells across various types and organs experienced senescence stresses from as early as the fetal stage. This was marked by elevated SA-β-Gal activity, overexpression of cell cycle inhibitors, augmented inflammatory responses, and a loss of cellular identity. Furthermore, we found evidence of mitochondrial disturbance, an increase in ribosomal protein transcription, and heightened apoptosis in fetal DS cells. This investigation also unearthed a regulatory network driven by an HSA21 gene, which leads to genome-wide expression changes. CONCLUSION The findings from this study offer significant insights into the molecular alterations that occur in DS, shedding light on the pathological processes underlying this disorder. These results can potentially guide future research and treatment development for DS.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huajing Gao
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runju Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Sun
- Department of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Linling Zhu
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Lovšin N. Copy Number Variation and Osteoporosis. Curr Osteoporos Rep 2023; 21:167-172. [PMID: 36795294 PMCID: PMC10105686 DOI: 10.1007/s11914-023-00773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings on copy number variations and susceptibility to osteoporosis. RECENT FINDINGS Osteoporosis is highly influenced by genetic factors, including copy number variations (CNVs). The development and accessibility of whole genome sequencing methods has accelerated the study of CNVs and osteoporosis. Recent findings include mutations in novel genes and validation of previously known pathogenic CNVs in monogenic skeletal diseases. Identification of CNVs in genes previously associated with osteoporosis (e.g. RUNX2, COL1A2, and PLS3) has confirmed their importance in bone remodelling. This process has been associated also with the ETV1-DGKB, AGBL2, ATM, and GPR68 genes, identified by comparative genomic hybridisation microarray studies. Importantly, studies in patients with bone pathologies have associated bone disease with the long non-coding RNA LINC01260 and enhancer sequences residing in the HDAC9 gene. Further functional investigation of genetic loci harbouring CNVs associated with skeletal phenotypes will reveal their role as molecular drivers of osteoporosis.
Collapse
Affiliation(s)
- Nika Lovšin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Sherman KM, Williams DK, Welsh CA, Cooper AM, Falck A, Huggins S, Bokhari RS, Gaddy D, McKelvey KD, Dawson LA, Suva LJ. Low bone mass and impaired fracture healing in mouse models of Trisomy21 (Down syndrome). Bone 2022; 162:116471. [PMID: 35716916 PMCID: PMC9356441 DOI: 10.1016/j.bone.2022.116471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Individuals with Down syndrome (DS), the result of trisomy of human chromosome Hsa21 (Ts21), present with an array of skeletal abnormalities typified by altered craniofacial features, short stature and low bone mineral density (BMD). While bone deficits progress with age in both sexes, low bone mass is more pronounced in DS men than women and osteopenia appears earlier. In the current study, the reproductive hormone status (FSH, LH, testosterone) of 17 DS patients (males, ages range 19-52 years) was measured. Although testosterone was consistently low, the hypothalamic-pituitary-gonadal axis was intact with corresponding rises in FSH and LH. To provide further insight into the heterogeneity of the bone mass in DS, the skeletal phenotypes of three of the most used murine DS models, Ts65Dn (Ts65), TC1, and Dp16(Yey1) (Dp16) were characterized and contrasted. Evaluation of the bone phenotype of both male and female 3-month-old Dp16 mice demonstrated sexual dimorphism, with low bone mass apparent in males, as it is in Ts65, but not in female Dp16. In contrast, male TC1 mice had no apparent bone phenotype. To determine whether low bone mass in DS impacted fracture healing, fractures of the middle phalanx (P2) digits were generated in both male and female Dp16 mice at 15 weeks of age, an age where the sexually dimorphic low BMD persisted. Fracture healing was assessed via in vivo microCT over (13 weeks) 93 days post fracture (DPF). At 93 DPF, 0 % of DS male (n = 12) or female (n = 8) fractures healed, compared to 50 % of the male (n = 28) or female (n = 8) WT littermate fractures. MicroCT revealed periosteal unbridged mineralized callus formation across the fracture gap in Dp16 mice, which was confirmed by subsequent histology. These studies provide the first direct evidence of significantly impaired fracture healing in the setting of DS.
Collapse
Affiliation(s)
- Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Diarra K Williams
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Casey A Welsh
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Alexis M Cooper
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Alyssa Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Shannon Huggins
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Rihana S Bokhari
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Kent D McKelvey
- Department of Family Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America; Department of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| |
Collapse
|
7
|
Thomas JR, Sloan K, Cave K, Wallace JM, Roper RJ. Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts. Genes (Basel) 2021; 12:1729. [PMID: 34828335 PMCID: PMC8624983 DOI: 10.3390/genes12111729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits than females. The relationships between causative trisomic genes, cellular mechanisms, and influence of sex in DS skeletal abnormalities remain unknown. One hypothesis is that the low bone turnover phenotype observed in DS results from attenuated osteoblast function, contributing to impaired trabecular architecture, altered cortical geometry, and decreased mineralization. DYRK1A, found in three copies in humans with DS, Ts65Dn, and Dp1Tyb DS model mice, has been implicated in the development of postnatal skeletal phenotypes associated with DS. Reduced copy number of Dyrk1a to euploid levels from conception in an otherwise trisomic Ts65Dn mice resulted in a rescue of appendicular bone deficits, suggesting DYRK1A contributes to skeletal development and homeostasis. We hypothesized that reduction of Dyrk1a copy number in trisomic osteoblasts would improve cellular function and resultant skeletal structural anomalies in trisomic mice. Female mice with a floxed Dyrk1a gene (Ts65Dn,Dyrk1afl/wt) were mated with male Osx-Cre+ (expressed in osteoblasts beginning around E13.5) mice, resulting in reduced Dyrk1a copy number in mature osteoblasts in Ts65Dn,Dyrk1a+/+/Osx-Cre P42 male and female trisomic and euploid mice, compared with littermate controls. Male and female Ts65Dn,Dyrk1a+/+/+ (3 copies of DYRK1A in osteoblasts) and Ts65Dn,Dyrk1a+/+/Osx-Cre (2 copies of Dyrk1a in osteoblasts) displayed similar defects in both trabecular architecture and cortical geometry, with no improvements with reduced Dyrk1a in osteoblasts. This suggests that trisomic DYRK1A does not affect osteoblast function in a cell-autonomous manner at or before P42. Although male Dp1Tyb and Ts65Dn mice exhibit similar skeletal deficits at P42 in both trabecular and cortical bone compartments between euploid and trisomic mice, female Ts65Dn mice exhibit significant cortical and trabecular deficits at P42, in contrast to an absence of genotype effect in female Dp1Tyb mice in trabecular bone. Taken together, these data suggest skeletal deficits in DS mouse models and are sex and age dependent, and influenced by strain effects, but are not solely caused by the overexpression of Dyrk1a in osteoblasts. Identifying molecular and cellular mechanisms, disrupted by gene dosage imbalance, that are involved in the development of skeletal phenotypes associated with DS could help to design therapies to rescue skeletal deficiencies seen in DS.
Collapse
Affiliation(s)
- Jared R. Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (J.R.T.); (K.S.); (K.C.)
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (J.R.T.); (K.S.); (K.C.)
| | - Kelsey Cave
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (J.R.T.); (K.S.); (K.C.)
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (J.R.T.); (K.S.); (K.C.)
| |
Collapse
|
8
|
Abstract
PURPOSE Down syndrome (DS) is caused by trisomy 21 (Ts21) and results in skeletal deficits including shortened stature, low bone mineral density, and a predisposition to early onset osteoporosis. Ts21 causes significant alterations in skeletal development, morphology of the appendicular skeleton, bone homeostasis, age-related bone loss, and bone strength. However, the genetic or cellular origins of DS skeletal phenotypes remain unclear. RECENT FINDINGS New studies reveal a sexual dimorphism in characteristics and onset of skeletal deficits that differ between DS and typically developing individuals. Age-related bone loss occurs earlier in the DS as compared to general population. Perturbations of DS skeletal quality arise from alterations in cellular and molecular pathways affected by the overexpression of trisomic genes. Sex-specific alterations occur in critical developmental pathways that disrupt bone accrual, remodeling, and homeostasis and are compounded by aging, resulting in increased risks for osteopenia, osteoporosis, and fracture in individuals with DS.
Collapse
Affiliation(s)
- Jared R Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL 306, Indianapolis, IN, 46202-3275, USA
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL 306, Indianapolis, IN, 46202-3275, USA.
| |
Collapse
|
9
|
The relationship between motor performance and femoral cartilage thickness in children with Down syndrome. Acta Neurol Belg 2021; 121:351-355. [PMID: 30838600 DOI: 10.1007/s13760-019-01105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Down syndrome (DS) is a genetic disorder associated with mental and motor developmental delays in childhood. The aim of this study was to investigate the relationship of the femoral cartilage thickness with motor performance in children with Down syndrome (DS). A total of 39 children with DS in the age range of 12-42 months were included in the study (female/male: 21/18; mean age: 23.4 ± 8.2 months). Femoral cartilage thickness was measured with ultrasound in the medial and lateral condyles and intercondylar areas of both knees. Gross motor subtest scaled scores of the Bayley Scales of Infant and Toddler Development III were used for the motor performance assessment. There was a positive correlation between the gross motor scaled scores and the femoral cartilage thickness in both knee joints (p < .05; r = 0.415 for the right medial condyle; r = 0.323 for the right lateral condyle; r = 0.339 for the right intercondylar area; r = 0.369 for the left medial condyle; r = 0.364 for the left lateral condyle, and r = 0.590 for the left intercondylar area). The study demonstrated that the femoral cartilage thickness was positively correlated with gross motor functioning in children with DS.
Collapse
|
10
|
LaCombe JM, Roper RJ. Skeletal dynamics of Down syndrome: A developing perspective. Bone 2020; 133:115215. [PMID: 31887437 PMCID: PMC7044033 DOI: 10.1016/j.bone.2019.115215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/24/2019] [Indexed: 01/14/2023]
Abstract
Individuals with Down syndrome (DS) display distinctive skeletal morphology compared to the general population, but disparate descriptions, methodologies, analyses, and populations sampled have led to diverging conclusions about this unique skeletal phenotype. As individuals with DS are living longer, they may be at a higher risk of aging disorders such as osteoporosis and increased fracture risk. Sexual dimorphism has been suggested between males and females with DS in which males, not females, experience an earlier decline in bone mineral density (BMD). Unfortunately, studies focusing on skeletal health related to Trisomy 21 (Ts21) are few in number and often too underpowered to answer questions about skeletal development, resultant osteoporosis, and sexual dimorphism, especially in stages of bone accrual. Further confounding the field are the varied methods of bone imaging, analysis, and data interpretation. This review takes a critical look at the current knowledge of DS skeletal phenotypes, both from human and mouse studies, and presents knowledge gaps that need to be addressed, differences in research methodologies and analyses that affect the interpretation of results, and proposes guidelines for overcoming obstacles to understand skeletal traits associated with DS. By examining our current knowledge of bone in individuals with Ts21, a trajectory for future studies may be established to provide meaningful solutions for understanding the development of and improving skeletal structures in individuals with and without DS.
Collapse
Affiliation(s)
- Jonathan M LaCombe
- Department of Biology, Indiana University-Purdue University Indianapolis, United States of America
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, United States of America.
| |
Collapse
|
11
|
The Outcomes of Posterior Arthrodesis for Atlantoaxial Subluxation in Down Syndrome Patients: A Meta-Analysis. Clin Spine Surg 2018; 31:300-305. [PMID: 29847415 DOI: 10.1097/bsd.0000000000000658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN This is a meta-analysis. OBJECTIVE To establish rates of (1) neurological complications, (2) bony-related complications, (3) complications delaying recovery, (4) reoperation, and (5) fatalities following posterior cervical arthrodesis in Down syndrome (DS) patients with atlantoaxial subluxation. To determine if presenting symptoms had any relationship to postoperative complications. SUMMARY OF BACKGROUND DATA Posterior arthrodesis is commonly utilized to correct cervical instability secondary to atlantoaxial instability in DS patients. However, there has never been a global evaluation of postoperative complications associated with posterior cervical spinal arthrodesis in DS patients. METHODS A comprehensive search of Medline/PubMed, EMBASE, and Ovid databases between January 1980 and July 2017 was utilized to identify DS patients with atlantoaxial subluxation who underwent posterior cervical arthrodesis. Data were sorted by neurological complications, complications delaying recovery, bony-related complications, reoperations, and fatalities. Patients were sorted into 2 groups based on presentation with or without neurological deficits. RESULTS Twelve studies met inclusion criteria, including 128 DS patients. Mean age was 13.8 years (range: 6.7-32.7 y; 47.8% male). Mean follow-up was 31.7 months (range: 14.9-77 mo). All patients underwent primary posterior cervical arthrodesis with an average of 2.5 vertebrae fused. A total of 39.6% of patients had bony-related complications [95% confidence interval (CI), 31.4%-48.5%], 23.3% had neurological deficits (95% CI, 16.6%-31.6%), and 26.4% experienced complications delaying recovery (95% CI, 19.4%-34.9%). The reoperation rate was 34.9% (95% CI, 25.5%-45.6%). The mortality rate was 3.9% (95% CI, 1.5%-9.7%). Neurological complications were 4-fold (P<0.05) and reoperation was 5.5-fold (P<0.05) more likely in patients presenting with neurological deficits compared with those without. CONCLUSIONS This study detailed global complication rates of posterior arthrodesis for DS patients, identifying bony-related complications and reoperations among the most common. Patients presenting with neurological symptoms and cervical instability have increased postoperative rates of neurological complications and reoperations than patients with instability alone. Further investigation into how postoperative complications effect patient independence is warranted.
Collapse
|
12
|
Orriss IR, Lanham S, Savery D, Greene NDE, Stanier P, Oreffo R, Copp AJ, Galea GL. Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice. Sci Rep 2018; 8:3325. [PMID: 29463853 PMCID: PMC5820290 DOI: 10.1038/s41598-018-21718-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Dawn Savery
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philip Stanier
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Andrew J Copp
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
13
|
Williams DK, Parham SG, Schryver E, Akel NS, Shelton RS, Webber J, Swain FL, Schmidt J, Suva LJ, Gaddy D. Sclerostin Antibody Treatment Stimulates Bone Formation to Normalize Bone Mass in Male Down Syndrome Mice. JBMR Plus 2017; 2:47-54. [PMID: 30283889 PMCID: PMC6124205 DOI: 10.1002/jbm4.10025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 01/28/2023] Open
Abstract
Down syndrome (DS), characterized by trisomy of human chromosome 21, is associated with a variety of endocrine disorders as well as profound skeletal abnormalities. The low bone mass phenotype in DS is defined by low bone turnover due to decreased osteoclast and osteoblast activity, decreasing the utility of antiresorptive agents in people with DS. Sclerostin antibody (SclAb) is a therapeutic candidate currently being evaluated as a bone anabolic agent. Scl, the product of the sclerostin gene (SOST), inhibits bone formation through its inhibition of Wnt signaling. SclAb increases bone mass by suppressing the action of the endogenous inhibitor of bone formation, Scl. To examine the effects of SclAb on the DS bone phenotype, 8‐week‐old male wild‐type (WT) andTs65Dn DS mice were treated with 4 weekly iv injections of 100 mg/kg SclAb. Dual‐energy X‐ray absorptiometry (DXA), microCT, and dynamic histomorphometry analyses revealed that SclAb had a significant anabolic effect on both age‐matched WT littermate controls and Ts65Dn DS mice that was osteoblast mediated, without significant changes in osteoclast parameters. SclAb treatment significantly increased both cortical and trabecular bone mass at multiple sites; SclAb treatment resulted in the normalization of Ts65Dn bone mineral density (BMD) to WT levels in the proximal tibia, distal femur, and whole body. Ex vivo bone marrow cultures demonstrated that SclAb increased the recruitment of the mesenchymal progenitors into the osteoblast lineage, as indicated by increased alkaline phosphatase–positive colonies, with no effect on osteoclast differentiation. Together, in the setting of a murine model of DS and decreased bone turnover, SclAb had a potent anabolic effect. SclAb stimulated bone formation and increased osteoblastogenesis without affecting osteoclastogenesis or bone resorption. These data suggest that SclAb is a promising new therapy to improve bone mass and reduce fracture risk in the face of the low bone mass and turnover prevalent in the DS population. © 2017 The Authors JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Diarra K Williams
- Department of Veterinary Physiology and Pharmacology College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX USA
| | - Sean G Parham
- Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA
| | - Eric Schryver
- Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA
| | - Nisreen S Akel
- Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA
| | - R Shane Shelton
- Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA
| | - Jessica Webber
- Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA
| | - Francis L Swain
- Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA
| | - Jami Schmidt
- Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX USA.,Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA
| | - Dana Gaddy
- Department of Orthopaedic Surgery Center for Orthopaedic Research University of Arkansas for Medical Sciences Little Rock AR USA.,Department of Veterinary Integrative Biosciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX USA
| |
Collapse
|