1
|
Zhou X, Deng J, Wang H, Liu Q. Biomacromolecules-based nanoparticle formulations for the treatment of osteoporosis: A bibliometric analysis. Int J Biol Macromol 2024; 282:136483. [PMID: 39442830 DOI: 10.1016/j.ijbiomac.2024.136483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
This bibliometric analysis examined biomacromolecule-based nanoparticle formulations, emphasizing polysaccharides, for osteoporosis treatments from 2009 to 2024. Using the Web of Science database, we tracked around 141 publications, of which 117 were original research articles. This shows an emerging trend in biomacromolecule-based nanoparticle formulations based on the total number of publications. On further analysis, we found 61 original articles that focused on polysaccharides-based nanoparticles for drug delivery. This study also identified 'pharmacology and pharmacy,' 'materials science, biomaterials, and 'nanoscience and nanotechnology' as the primary research areas, emphasizing the field's interdisciplinary nature. The 'Journal of Drug Delivery Science and Technology' emerged as a significant journal for this research theme. Notable contributions came from the Egyptian Knowledge Bank and funding organizations like the National Natural Science Foundation of China. China, India, and Egypt are the top three research-productive countries in this field. This novel study underscores a dynamic, globally collaborative effort to advance polysaccharide-based nanoparticle applications in osteoporosis treatment. Based on the current publications, it also highlights challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Liaoning 110000, China
| | - Jiewen Deng
- Department of Orthopedics, Shengjing Hospital of China Medical University, Liaoning 110000, China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Liaoning 110000, China
| | - Qi Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Liaoning 110000, China.
| |
Collapse
|
2
|
Zeghoud S, Ben Amor I, Alnazza Alhamad A, Darwish L, Hemmami H. Osteoporosis therapy using nanoparticles: a review. Ann Med Surg (Lond) 2024; 86:284-291. [PMID: 38222677 PMCID: PMC10783367 DOI: 10.1097/ms9.0000000000001467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 01/16/2024] Open
Abstract
Osteoporosis, characterized by low bone density and increased risk of fractures, represents a major healthcare challenge. Anti-resorptive and anabolic medications are now used to treat osteoporosis in an effort to reduce bone loss and increase bone mass. Innovative methods are required since current therapies have drawbacks. Promising options for improving bone health and medicine delivery are provided by nanotechnology. Bisphosphonates with tetracyclines and oligopeptides, among other compounds that target the bone, make it easier to provide a particular medication to bone tissue. Additionally, nanocarriers are essential for the administration of both organic and inorganic nanoparticles in the treatment of osteoporosis. Drug encapsulation and controlled release may be done in a variety of ways using organic nanoparticles. Inorganic nanoparticles have special qualities that help in medication transport and bone repair. This review explores the potential of nanoparticle-based strategies in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syria
| | - Lamis Darwish
- Mechanical Engineering Department, School of Sciences and Engineering, The American University in Cairo, Egypt
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| |
Collapse
|
3
|
Liang W, Zhou C, Jin S, Fu L, Zhang H, Huang X, Long H, Ming W, Zhao J. An update on the advances in the field of nanostructured drug delivery systems for a variety of orthopedic applications. Drug Deliv 2023; 30:2241667. [PMID: 38037335 PMCID: PMC10987052 DOI: 10.1080/10717544.2023.2241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 12/02/2023] Open
Abstract
Nanotechnology has made significant progress in various fields, including medicine, in recent times. The application of nanotechnology in drug delivery has sparked a lot of research interest, especially due to its potential to revolutionize the field. Researchers have been working on developing nanomaterials with distinctive characteristics that can be utilized in the improvement of drug delivery systems (DDS) for the local, targeted, and sustained release of drugs. This approach has shown great potential in managing diseases more effectively with reduced toxicity. In the medical field of orthopedics, the use of nanotechnology is also being explored, and there is extensive research being conducted to determine its potential benefits in treatment, diagnostics, and research. Specifically, nanophase drug delivery is a promising technique that has demonstrated the capability of delivering medications on a nanoscale for various orthopedic applications. In this article, we will explore current advancements in the area of nanostructured DDS for orthopedic use.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Songtao Jin
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of traditional Chinese Medicine, Shaoxing, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
4
|
Kim J, Choi YJ, Park H, Yun HS. Fabrication of multifunctional alginate microspheres containing hydroxyapatite powder for simultaneous cell and drug delivery. Front Bioeng Biotechnol 2022; 10:827626. [PMID: 36017354 PMCID: PMC9395714 DOI: 10.3389/fbioe.2022.827626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Novel alginate-hydroxyapatite hybrid microspheres were developed for simultaneous delivery of drugs and cells as a multifunctional bone substitute for osteoporotic bone tissue regeneration. The microspheres were used to enhance osteogenesis and to carry and deliver quercetin, a representative phytoestrogen that controls bone tissue regeneration metabolism in osteoporosis patients, through sustained release over a long period. To overcome quercetin’s hydrophobicity and low solubility in aqueous environments, we added it to the surface of hydroxyapatite (HAp) nanoparticles before mixing them with an alginate solution. The homogeneous distribution of the HAp nanoparticles in the alginate solution was essential for preventing nozzle clogging and achieving successfully fabricated hybrid microspheres. To this end, a 3D ultrasonic treatment was applied. Electrostatic microencapsulation was then used to fabricate hybrid alginate-HAp microspheres containing quercetin and cells. The microspheres were approximately 290.7 ± 42.5 μm (aspect ratio of 1). The sustained release of quercetin was confirmed during a test period of 20 weeks. The cells in the hybrid microspheres maintained good cell viability during the entire testing period, and their osteogenic differentiation behavior was boosted by the presence of HAp. Thus, osteogenic differentiation could be greatly improved by adding quercetin. These novel multi-biofunctional hybrid microspheres have great potential for the regeneration of osteoporotic bone tissue at indeterminate defect sites.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Advanced Materials Engineering, University of Science & Technology (UST), Daejeon, South Korea
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Yeong-Jin Choi
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Honghyun Park
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
- *Correspondence: Honghyun Park, ; Hui-suk Yun,
| | - Hui-suk Yun
- Department of Advanced Materials Engineering, University of Science & Technology (UST), Daejeon, South Korea
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
- *Correspondence: Honghyun Park, ; Hui-suk Yun,
| |
Collapse
|
5
|
Arcos D, Gómez-Cerezo N, Saiz-Pardo M, de Pablo D, Ortega L, Enciso S, Fernández-Tomé B, Díaz-Güemes I, Sánchez-Margallo FM, Casarrubios L, Feito MJ, Portolés MT, Vallet-Regí M. Injectable Mesoporous Bioactive Nanoparticles Regenerate Bone Tissue under Osteoporosis Conditions. Acta Biomater 2022; 151:501-511. [PMID: 35933104 DOI: 10.1016/j.actbio.2022.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The osteogenic capability of mesoporous bioactive nanoparticles (MBNPs) in the SiO2-CaO system has been assessed in vivo using an osteoporotic rabbit model. MBNPs have been prepared using a double template method, resulting in spherical nanoparticles with a porous core-shell structure that has a high surface area and the ability to incorporate the anti-osteoporotic drug ipriflavone. In vitro expression of the pro-inflammatory genes NF-κB1, IL-6, TNF-α, P38 and NOS2 in RAW-264.7 macrophages, indicates that these nanoparticles do not show adverse inflammatory effects. An injectable system has been prepared by suspending MBNPs in a hyaluronic acid-based hydrogel, which has been injected intraosseously into cavitary bone defects in osteoporotic rabbits. The histological analyses evidenced that MBNPs promote bone regeneration with a moderate inflammatory response. The incorporation of ipriflavone into these nanoparticles resulted in a higher presence of osteoblasts and enhanced angiogenesis at the defect site, but without showing significant differences in terms of new bone formation. STATEMENT OF SIGNIFICANCE: Mesoporous bioactive glass nanoparticles have emerged as one of the most interesting materials in the field of bone regeneration therapies. For the first time, injectable mesoporous bioactive nanoparticles have been tested in vivo using an osteoporotic animal model. Our findings evidence that MBG nanoparticles can be loaded with an antiosteoporotic drug, ipriflavone, and incorporated in hyaluronic acid to make up an injectable hydrogel. The incorporation of MBG nanoparticles promotes bone regeneration even under osteoporotic conditions, whereas the presence of IP enhances angiogenesis as well as the presence of osteoblast cells lining in the newly formed bone. The injectable device presented in this work opens new possibilities for the intraosseous treatment of osteoporotic bone using minimally invasive surgery.
Collapse
Affiliation(s)
- D Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain.
| | - N Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - M Saiz-Pardo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - D de Pablo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - L Ortega
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - S Enciso
- Centro de Cirugía de Mínima Invasión Jesus Usón, NANBIOSIS, Cáceres, Spain
| | - B Fernández-Tomé
- Centro de Cirugía de Mínima Invasión Jesus Usón, NANBIOSIS, Cáceres, Spain
| | - I Díaz-Güemes
- Centro de Cirugía de Mínima Invasión Jesus Usón, NANBIOSIS, Cáceres, Spain
| | | | - L Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M J Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M T Portolés
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials 2022; 286:121604. [PMID: 35667249 PMCID: PMC9881498 DOI: 10.1016/j.biomaterials.2022.121604] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Tissue engineering strategies for treating bone loss to date have largely focused on targeting stem cells or vascularization. Immune cells, including macrophages and T cells, can also indirectly enhance bone healing via cytokine secretion to interact with other bone niche cells. Bone niche cues and local immune environment vary depending on anatomical location, size of defects and disease types. As such, it is critical to evaluate the role of the immune system in the context of specific bone niche and different disease types. This review focuses on immunomodulation research for bone applications using biomaterials and cell-based strategies, with a unique perspective from different disease types. We first reviewed applications for prolonging orthopaedic implant lifetime and enhancing fracture healing, two clinical challenges where immunomodulatory strategies were initially developed for orthopedic applications. We then reviewed recent research progress in harnessing immunomodulatory strategies for regenerating critical-sized, long bone or cranial bone defects, and treating osteolytic bone diseases. Remaining gaps in knowledge, future directions and opportunities were also discussed.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.,: Corresponding Author Fan Yang, Ph D, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, 240 Pasteur Dr, Palo Alto, CA 94304, Biomedical Innovation Building, 1st floor, Room 1200, , Phone: (650) 646-8558
| |
Collapse
|
7
|
Chai H, Sang S, Luo Y, He R, Yuan X, Zhang X. Icariin-loaded Sulfonated Polyetheretherketone with Osteogenesis Promotion and Osteoclastogenesis Inhibition Properties via Immunomodulation for Advanced Osseointegration. J Mater Chem B 2022; 10:3531-3540. [PMID: 35416810 DOI: 10.1039/d1tb02802b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preventing prosthesis loosening due to insufficient osseointegration is critical for patients with osteoporosis. Endowing implants with immunomodulatory function can effectively enhance osseointegration. In this work, we loaded icariin (ICA) onto...
Collapse
Affiliation(s)
- Haobu Chai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Shang Sang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Renke He
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Xiangwei Yuan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
8
|
Thurner GC, Haybaeck J, Debbage P. Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis? Int J Mol Sci 2021; 22:8932. [PMID: 34445639 PMCID: PMC8396227 DOI: 10.3390/ijms22168932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles bearing specific targeting groups can, in principle, accumulate exclusively at lesion sites bearing target molecules, and release therapeutic agents there. However, practical application of targeted nanoparticles in the living organism presents challenges. In particular, intravasally applied nanoparticles encounter physical and physiological barriers located in blood vessel walls, blocking passage from the blood into tissue compartments. Whereas small molecules can pass out of the blood, nanoparticles are too large and need to utilize physiological carriers enabling passage across endothelial walls. The issues associated with crossing blood-tissue barriers have limited the usefulness of nanoparticles in clinical applications. However, nanoparticles do not encounter blood-tissue barriers if their targets are directly accessible from the blood. This review focuses on osteoporosis, a disabling and common disease for which therapeutic strategies are limited. The target sites for therapeutic agents in osteoporosis are located in bone resorption pits, and these are in immediate contact with the blood. There are specific targetable biomarkers within bone resorption pits. These present nanomedicine with the opportunity to treat a major disease by use of simple nanoparticles loaded with any of several available effective therapeutics that, at present, cannot be used due to their associated side effects.
Collapse
Affiliation(s)
- Gudrun C. Thurner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstraße 59, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Ray SS, Katata-Seru L, Mufamadi S, Mufhandu H. Osteoporosis and Its Nanotechnology-Based Advanced Treatment-An Overview. J Biomed Nanotechnol 2021; 17:809-821. [PMID: 34082868 DOI: 10.1166/jbn.2021.3092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human Immunodeficiency Virus (HIV) is a global pandemic that has contributed to the burden of disease, and the synergistic interaction between Herpes Simplex Virus (HSV) and HIV has assisted further in the spread of the HIV disease. Moreover, several chemotherapeutic treatment options from antiviral monotherapy to highly active antiretroviral therapy (HAART) have been adopted to manage the infection; however, HIV has developed new mechanisms against these active pharmaceutical agents (APAs), limiting the effect of the drugs. In this article, we reviewed different nanoparticles and their antiviral potency against HSV and HIV infection as well as the effect of drug encapsulated nanoparticles using different drug delivery systems as they palliate to some flaws or deficiencies that the stand-alone drugs present. Drug encapsulated nanoparticles show better treatment outcomes of HSV and HIV infection. The nanoparticles can transverse the anatomic privilege sites to exert their therapeutic effect, and a prolonged and higher dose of the encapsulated therapeutic agent can ease the dosage frequency, thus palliating low drug compliance which the stand-alone drugs fail to perform. Therefore, it is clear that nanoparticles prevent antiviral drug resistance by maintaining sustained drug release over an extended period, improving the therapeutic effect of the entrapped drug.
Collapse
Affiliation(s)
| | | | | | - Hazel Mufhandu
- Department of Microbiology, North-West University, Mafikeng, 2735, South Africa
| |
Collapse
|
10
|
Goulart da Silva T, Baptista Pereira D, Ferreira de Carvalho Patricio B, Alvares Sarcinelli M, Antunes Rocha HV, Letichevsky S, Evelise Ribeiro da Silva C, Mendonça RH. Polycaprolactone/alendronate systems intended for production of biomaterials. J Appl Polym Sci 2021. [DOI: 10.1002/app.50678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Talita Goulart da Silva
- Departamento de Engenharia Química/Instituto de Tecnologia Universidade Federal Rural do Rio de Janeiro Seropédica Brazil
| | - Debora Baptista Pereira
- Departamento de Engenharia Química/Instituto de Tecnologia Universidade Federal Rural do Rio de Janeiro Seropédica Brazil
| | | | | | | | - Sonia Letichevsky
- Departamento de Engenharia Química e de Materiais Pontifícia Universidade Católica do Rio de Janeiro Rio de Janeiro Brazil
| | | | - Roberta Helena Mendonça
- Departamento de Engenharia Química/Instituto de Tecnologia Universidade Federal Rural do Rio de Janeiro Seropédica Brazil
| |
Collapse
|
11
|
Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJ. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Nanotechnology-based drug delivery systems in orthopedics. Jt Dis Relat Surg 2021; 32:267-273. [PMID: 33463450 PMCID: PMC8073448 DOI: 10.5606/ehc.2021.80360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanotechnology has led to significant scientific and technological advances in diverse fields, specifically within the field of medicine. Owing to the revolutionary implications in drug delivery, nanotechnology-based drug delivery systems have gained an increasing research interest in the current medical field. A variety of nanomaterials with unique physical, chemical and biological properties have been engineered to develop new drug delivery systems for the local, sustained and targeted delivery of drugs with improved therapeutic efficiency and less or no toxicity, representing a very promising approach for the effective management of diseases. The utility of nanotechnology, particularly in the field of orthopedics, is a topic of extensive research. Nanotechnology has a great potential to revolutionize treatment, diagnostics, and research in the field of orthopedics. Nanophase drug delivery has shown great promise in their ability to deliver drugs at nanoscale for a variety of orthopedic applications. In this review, we discuss recent advances in the field of nanostructured drug delivery systems for orthopedic applications.
Collapse
|
13
|
Nanotechnology in Spine Surgery: A Current Update and Critical Review of the Literature. World Neurosurg 2019; 123:142-155. [DOI: 10.1016/j.wneu.2018.11.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/25/2023]
|
14
|
Cai Y, Gao T, Fu S, Sun P. Development of zoledronic acid functionalized hydroxyapatite loaded polymeric nanoparticles for the treatment of osteoporosis. Exp Ther Med 2018; 16:704-710. [PMID: 30116324 PMCID: PMC6090242 DOI: 10.3892/etm.2018.6263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/29/2017] [Indexed: 01/12/2023] Open
Abstract
The present study formulated a hydroxyapatite (HA)-coated lipid nanoparticle loaded with zoledronic acid to treat patients with osteoporosis (OP). HA-coated zoledronic acid loaded lipid bilayer nanoparticles (HZL NPs) were prepared using methods of extrusion and precipitation. Nanosized particles were prepared with the aim of increasing gradual and prolonged drug release and inducing toxicity of osteoblasts. Cellular morphology was investigated by scanning electron microscopy, which revealed clear spherical shaped NPs ~200 nm in size that could treat osteopores in the bone. In addition, a typical biphasic release pattern was observed that could be attributed to the presence of drug on the outer surface as well as on the inner core of the NPs. There was sustained release behavior [38.17±2.12% (pH 7.4) and 64.2±3.75% (pH 5) at 48 h] of the drug that maintained the drug reservoir effect at the bone site. Furthermore, HZL NPs increased the cytotoxicity of HFOb 1.19 cells and increased the proportion of cells in the early (18.1±12.4%), late (28.7±3.7%) and necrotic (67.5±1.2%) phases of apoptosis. Most importantly, HZL in the lipid nanoparticle exhibited a strong affinity towards HA, further enhancing its efficacy in the treatment of OP.
Collapse
Affiliation(s)
- Yunlu Cai
- Department of Orthopedics, The Eighth People's Hospital of Shanghai, Shanghai 200235, P.R. China
| | - Tiantian Gao
- Department of Orthopedics, The Eighth People's Hospital of Shanghai, Shanghai 200235, P.R. China
| | - Shiping Fu
- Department of Orthopedics, The Eighth People's Hospital of Shanghai, Shanghai 200235, P.R. China
| | - Ping Sun
- Department of Orthopedics, The Eighth People's Hospital of Shanghai, Shanghai 200235, P.R. China
| |
Collapse
|
15
|
Pucci JU, Christophe BR, Sisti JA, Connolly ES. Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv 2017; 35:521-529. [PMID: 28552791 DOI: 10.1016/j.biotechadv.2017.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/01/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023]
Abstract
Three-dimensional (3D) printers are a developing technology penetrating a variety of markets, including the medical sector. Since its introduction to the medical field in the late 1980s, 3D printers have constructed a range of devices, such as dentures, hearing aids, and prosthetics. With the ultimate goals of decreasing healthcare costs and improving patient care and outcomes, neurosurgeons are utilizing this dynamic technology, as well. Digital Imaging and Communication in Medicine (DICOM) can be translated into Stereolithography (STL) files, which are then read and methodically built by 3D Printers. Vessels, tumors, and skulls are just a few of the anatomical structures created in a variety of materials, which enable surgeons to conduct research, educate surgeons in training, and improve pre-operative planning without risk to patients. Due to the infancy of the field and a wide range of technologies with varying advantages and disadvantages, there is currently no standard 3D printing process for patient care and medical research. In an effort to enable clinicians to optimize the use of additive manufacturing (AM) technologies, we outline the most suitable 3D printing models and computer-aided design (CAD) software for 3D printing in neurosurgery, their applications, and the limitations that need to be overcome if 3D printers are to become common practice in the neurosurgical field.
Collapse
Affiliation(s)
- Josephine U Pucci
- Columbia University Medical Center Department of Neurological Surgery, 710 W 168th Street, New York, NY 10032, United States.
| | - Brandon R Christophe
- Columbia University Medical Center Department of Neurological Surgery, 710 W 168th Street, New York, NY 10032, United States.
| | - Jonathan A Sisti
- Columbia University Medical Center Department of Neurological Surgery, 710 W 168th Street, New York, NY 10032, United States.
| | - Edward S Connolly
- Columbia University Medical Center Department of Neurological Surgery, 710 W 168th Street, New York, NY 10032, United States.
| |
Collapse
|