1
|
Grgic O, Prijatelj V, Dudakovic A, Vucic S, Dhamo B, Trajanoska K, Monnereau C, Zrimsek M, Gautvik K, Reppe S, Shimizu E, Haworth S, Timpson N, Jaddoe V, Jarvelin MR, Evans D, Uitterlinden A, Ongkosuwito E, van Wijnen A, Medina-Gomez C, Rivadeneira F, Wolvius E. Novel Genetic Determinants of Dental Maturation in Children. J Dent Res 2023; 102:349-356. [PMID: 36437532 PMCID: PMC10083589 DOI: 10.1177/00220345221132268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dental occlusion requires harmonious development of teeth, jaws, and other elements of the craniofacial complex, which are regulated by environmental and genetic factors. We performed the first genome-wide association study (GWAS) on dental development (DD) using the Demirjian radiographic method. Radiographic assessments from participants of the Generation R Study (primary study population, N1 = 2,793; mean age of 9.8 y) were correlated with ~30 million genetic variants while adjusting for age, sex, and genomic principal components (proxy for population stratification). Variants associated with DD at genome-wide significant level (P < 5 × 10-8) mapped to 16q12.2 (IRX5) (lead variant rs3922616, B = 0.16; P = 2.2 × 10-8). We used Fisher's combined probability tests weighted by sample size to perform a meta-analysis (N = 14,805) combining radiographic DD at a mean age of 9.8 y from Generation R with data from a previous GWAS (N2 = 12,012) on number of teeth (NT) in infants used as proxy of DD at a mean age of 9.8 y (including the ALSPAC and NFBC1966). This GWAS meta-analysis revealed 3 novel loci mapping to 7p15.3 (IGF2BP3: P = 3.2 × 10-8), 14q13.3 (PAX9: P = 1.9 × 10-8), and 16q12.2 (IRX5: P = 1.2 × 10-9) and validated 8 previously reported NT loci. A polygenic allele score constructed from these 11 loci was associated with radiographic DD in an independent Generation R set of children (N = 703; B = 0.05, P = 0.004). Furthermore, profiling of the identified genes across an atlas of murine and human stem cells observed expression in the cells involved in the formation of bone and/or dental tissues (>0.3 frequency per kilobase of transcript per million mapped reads), likely reflecting functional specialization. Our findings provide biological insight into the polygenic architecture of the pediatric dental maturation process.
Collapse
Affiliation(s)
- O. Grgic
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - V. Prijatelj
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - A. Dudakovic
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - S. Vucic
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - B. Dhamo
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - K. Trajanoska
- Department of Human Genetics McGill
University, Montréal, Québec, Canada
- Canada Excellence Research Chair in
Genomic Medicine, McGill University, Montréal, Québec, Canada
| | - C. Monnereau
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - M. Zrimsek
- Department of Pathology, Medical
University of Vienna, Vienna, Austria
| | - K.M. Gautvik
- Department of Medical Biochemistry,
Oslo University Hospital, Oslo, Norway
| | - S. Reppe
- Department of Medical Biochemistry,
Oslo University Hospital, Oslo, Norway
| | - E. Shimizu
- Department of Oral Biology, Rutgers
School of Dental Medicine, Newark, NJ, USA
| | - S. Haworth
- Department of Population Health
Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Dental School, University of
Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit,
University of Bristol, Bristol, UK
| | - N.J. Timpson
- Department of Population Health
Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit,
University of Bristol, Bristol, UK
| | - V.W.V. Jaddoe
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - M.-R. Jarvelin
- Faculty of Medicine, Center for Life
Course Health Research, University of Oulu, Oulu, Finland
- Faculty of Medicine, School of Public
Health, Imperial College, London, UK
| | - D. Evans
- MRC Integrative Epidemiology Unit,
University of Bristol, Bristol, UK
- Diamantina Institute, The University
of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience,
The University of Queensland, Brisbane, Australia
| | | | - E.M. Ongkosuwito
- Dentistry, Section Orthodontics and
Craniofacial Biology, Radboud University Medical Center, Nijmegen, The
Netherlands
| | - A.J. van Wijnen
- Department of Biochemistry,
University of Vermont, Burlington, VT, USA
| | - C. Medina-Gomez
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - F. Rivadeneira
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - E.B. Wolvius
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| |
Collapse
|
2
|
Kramer K, Chavez MB, Tran AT, Farah F, Tan MH, Kolli TN, Dos Santos EJL, Wimer HF, Millán JL, Suva LJ, Gaddy D, Foster BL. Dental defects in the primary dentition associated with hypophosphatasia from biallelic ALPL mutations. Bone 2021; 143:115732. [PMID: 33160095 PMCID: PMC7769999 DOI: 10.1016/j.bone.2020.115732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
ALPL encodes tissue-nonspecific alkaline phosphatase (TNAP), an enzyme expressed in bone, teeth, liver, and kidney. ALPL loss-of-function mutations cause hypophosphatasia (HPP), an inborn error-of-metabolism that produces skeletal and dental mineralization defects. Case reports describe widely varying dental phenotypes, making it unclear how HPP comparatively affects the three unique dental mineralized tissues: enamel, dentin, and cementum. We hypothesized that HPP affected all dental mineralized tissues and aimed to establish quantitative measurements of dental tissues in a subject with HPP. The female proband was diagnosed with HPP during childhood based on reduced alkaline phosphatase activity (ALP), mild rachitic skeletal effects, and premature primary tooth loss. The diagnosis was subsequently confirmed genetically by the presence of compound heterozygous ALPL mutations (exon 5: c.346G>A, p.A116T; exon 10: c.1077C>G, p.I359M). Dental defects in 8 prematurely exfoliated primary teeth were analyzed by high resolution micro-computed tomography (micro-CT) and histology. Similarities to the Alpl-/- mouse model of HPP were identified by additional analyses of murine dentoalveolar tissues. Primary teeth from the proband exhibited substantial remaining root structure compared to healthy control teeth. Enamel and dentin densities were not adversely affected in HPP vs. control teeth. However, analysis of discrete dentin regions revealed an approximate 10% reduction in the density of outer mantle dentin of HPP vs. control teeth. All 4 incisors and the molar lacked acellular cementum by micro-CT and histology, but surprisingly, 2 of 3 prematurely exfoliated canines exhibited apparently normal acellular cementum. Based on dentin findings in the proband's teeth, we examined dentoalveolar tissues in a mouse model of HPP, revealing that the delayed initiation of mineralization in the incisor mantle dentin was associated with a broader lack of circumpulpal dentin mineralization. This study describes a quantitative approach to measure effects of HPP on dental tissues. This approach has uncovered a previously unrecognized novel mantle dentin defect in HPP, as well as a surprising and variable cementum phenotype within the teeth from the same HPP subject.
Collapse
Affiliation(s)
- K Kramer
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A T Tran
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - F Farah
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E J Lira Dos Santos
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA; Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, SP, Brazil
| | - H F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - L J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - D Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Cao D, Shao B, Izadikhah I, Xie L, Wu B, Li H, Yan B. Root dilaceration in maxillary impacted canines and adjacent teeth: A retrospective analysis of the difference between buccal and palatal impaction. Am J Orthod Dentofacial Orthop 2020; 159:167-174. [PMID: 33342674 DOI: 10.1016/j.ajodo.2019.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/01/2019] [Accepted: 12/01/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION This research aimed to analyze the prevalence of root dilaceration in buccally impacted canines (BICs) and palatally impacted canines (PICs) with their adjacent teeth based on a retrospective cone-beam computed tomography (CBCT) investigation. METHODS Pretreatment CBCT images of 145 subjects with unilateral maxillary canine impaction and 145 age- and sex-matched subjects without impaction were used. Prevalence of dilaceration (subclassified to root curvature and apical hook based on severity) in canines and adjacent teeth was determined in CBCT records. The root length of maxillary impacted canines was measured for further morphologic evaluations. RESULTS Impacted canines had a significantly higher prevalence of root dilaceration than the control group and compared with the erupted contralateral canines in the experimental group (P < 0.001 for both). A significantly higher prevalence of root dilaceration was found in adjacent lateral incisors of the PICs subgroup than that of the control group (P < 0.001). Adjacent premolars had a higher prevalence of dilacerated roots in the PICs subgroup (P < 0.001) than the control group, but not for the BICs subgroup. Significantly higher prevalence of curvature (P < 0.001 for both) and hook (P = 0.008 and P < 0.001, respectively) were found in BICs and PICs roots compared with the control group. Both types of impacted canines had significantly shorter roots than the control group (P < 0.001 for both). CONCLUSIONS BICs and PICs have a higher tendency to present root dilaceration and shorter roots. Unlike BICs, adjacent teeth to PICs were more frequently observed to have root dilaceration.
Collapse
Affiliation(s)
- Dan Cao
- Jiangsu Key Laboratory of Oral Diseases, and Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Bingting Shao
- Jiangsu Key Laboratory of Oral Diseases, and Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Iman Izadikhah
- Jiangsu Key Laboratory of Oral Diseases, and Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lizhe Xie
- Jiangsu Key Laboratory of Oral Diseases, Engineering Center for Digital Medical Technology of Stomatology, Nanjing Medical University, Nanjing, China
| | - Bin Wu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Hu Li
- Jiangsu Key Laboratory of Oral Diseases, and Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Bin Yan
- Jiangsu Key Laboratory of Oral Diseases, and Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Walshaw EG, Noble F, Conville R, Anne Lawson J, Hasmun N, Rodd H. Molar incisor hypomineralisation and dental anomalies: A random or real association? Int J Paediatr Dent 2020; 30:342-348. [PMID: 31790155 DOI: 10.1111/ipd.12601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Clinical observations suggest molar incisor hypomineralisation (MIH) may present with other dental conditions. AIMS The study aimed to determine the prevalence and variety of dental anomalies in children presenting with MIH. DESIGN A convenience sample of children referred to a UK dental hospital was recruited. Orthopantogram radiographs, taken as part of routine care, were assessed for dental anomalies. Two calibrated examiners reviewed the films separately and determined the presence and character of anomalies. RESULTS Radiographs were obtained from 101 patients, with an age range of 6-15 years. Co-existing hypodontia was identified in 12%, with lower second premolars being the most commonly missing teeth. Concurrent ectopic first permanent molars were identified in 8%, and infraocclusion of one or more primary molars was identified in 9%. Abnormal morphology was found in 9%, including macrodont and microdont teeth. In total, 29% of patients had an associated dental anomaly. Examiners had perfect agreement using Cohen's kappa coefficient. CONCLUSION This high prevalence of dental anomalies, particularly hypodontia, in children with MIH is a novel and clinically important finding. Further research is warranted considering the potential implications for assessment and treatment planning.
Collapse
Affiliation(s)
- Emma Grace Walshaw
- Charles Clifford Dental Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | | | - Robert Conville
- Charles Clifford Dental Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Jennifer Anne Lawson
- Charles Clifford Dental Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | | | | |
Collapse
|
5
|
Bigoni S, Neri M, Scotton C, Farina R, Sabatelli P, Jiang C, Zhang J, Falzarano MS, Rossi R, Ognibene D, Selvatici R, Gualandi F, Bosshardt D, Perri P, Campa C, Brancati F, Salvatore M, De Stefano MC, Taruscio D, Trombelli L, Fang M, Ferlini A. Homozygous Recessive Versican Missense Variation Is Associated With Early Teeth Loss in a Pakistani Family. Front Genet 2019; 9:723. [PMID: 30740127 PMCID: PMC6357929 DOI: 10.3389/fgene.2018.00723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/22/2018] [Indexed: 11/13/2022] Open
Abstract
Only a few genes involved in teeth development and morphology are known to be responsible for tooth abnormalities in Mendelian-inherited diseases. We studied an inbred family of Pakistani origin in which two first-cousin born brothers are affected by early tooth loss with peculiar teeth abnormalities characterized by the absence of cementum formation. Whole exome sequencing revealed a H2665L homozygous sequence variant in the VCAN gene. Dominant splicing mutations in VCAN are known to cause Wagner syndrome or vitreoretinopathy. We explored teeth morphology in these two patients, while versican expression was assessed by western blot analysis. Early signs of vitreoretinopathy were found in the elder brother while the parents were completely negative. Our findings suggest that the homozygous recessive H2665L missense sequence variant impairs the normal morphology of the teeth roots via loss of cementum synthesis, and is also associated with early onset, recessive, Wagner syndrome, thus expanding both the phenotype mutation scenario and the inheritance mode of VCAN mutations.
Collapse
Affiliation(s)
- Stefania Bigoni
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcella Neri
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Farina
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | | | | | - Maria Sofia Falzarano
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rachele Rossi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Ognibene
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rita Selvatici
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Dieter Bosshardt
- Department of Periodontology and Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Paolo Perri
- Eye Clinic, Sant'Anna University Hospital, Ferrara, Italy
| | - Claudio Campa
- Eye Clinic, Sant'Anna University Hospital, Ferrara, Italy
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila Italy.,Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | | | | | | | - Leonardo Trombelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
| | - Mingyan Fang
- BGI-Shenzhen, Shenzhen, China.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Dubowitz Neuromuscular Unit, University College London, London, United Kingdom
| |
Collapse
|
6
|
Neves LT, Dionísio TJ, Garbieri TF, Parisi VA, Oliveira FV, Oliveira TM, Santos CF. Novel rare variations in
IRF6
in subjects with non‐syndromic cleft lip and palate and dental agenesis. Oral Dis 2018; 25:223-233. [DOI: 10.1111/odi.12975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lucimara T. Neves
- Department of Biological Sciences, Bauru School of Dentistry University of São Paulo Bauru Brazil
- Post‐Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies University of São Paulo Bauru Brazil
| | - Thiago J. Dionísio
- Department of Biological Sciences, Bauru School of Dentistry University of São Paulo Bauru Brazil
| | - Thais F. Garbieri
- Department of Biological Sciences, Bauru School of Dentistry University of São Paulo Bauru Brazil
| | - Viviane A. Parisi
- Department of Biological Sciences, Bauru School of Dentistry University of São Paulo Bauru Brazil
| | - Fernanda V. Oliveira
- Department of Pediatric Dentistry, Orthodontics and Community Health, Bauru School of Dentistry University of São Paulo Bauru Brazil
| | - Thais M. Oliveira
- Post‐Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies University of São Paulo Bauru Brazil
- Department of Pediatric Dentistry, Orthodontics and Community Health, Bauru School of Dentistry University of São Paulo Bauru Brazil
| | - Carlos F. Santos
- Department of Biological Sciences, Bauru School of Dentistry University of São Paulo Bauru Brazil
- Post‐Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies University of São Paulo Bauru Brazil
| |
Collapse
|
7
|
Wong SW, Han D, Zhang H, Liu Y, Zhang X, Miao MZ, Wang Y, Zhao N, Zeng L, Bai B, Wang YX, Liu H, Frazier-Bowers SA, Feng H. Nine Novel PAX9 Mutations and a Distinct Tooth Agenesis Genotype-Phenotype. J Dent Res 2017; 97:155-162. [PMID: 28910570 DOI: 10.1177/0022034517729322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tooth agenesis is one of the most common developmental anomalies affecting function and esthetics. The paired-domain transcription factor, Pax9, is critical for patterning and morphogenesis of tooth and taste buds. Mutations of PAX9 have been identified in patients with tooth agenesis. Despite significant progress in the genetics of tooth agenesis, many gaps in knowledge exist in refining the genotype-phenotype correlation between PAX9 and tooth agenesis. In the present study, we complete genetic and phenotypic characterization of multiplex Chinese families with nonsyndromic (NS) tooth agenesis. Direct sequencing of polymerase chain reaction products revealed 9 novel (c.140G>C, c.167T>A, c.332G>C, c.194C>A, c.271A>T, c.146delC, c.185_189dup, c.256_262dup, and c.592delG) and 2 known heterozygous mutations in the PAX9 gene among 120 probands. Subsequently, pedigrees were extended, and we confirmed that the mutations co-segregated with the tooth agenesis phenotype (with exception of families in which DNA analysis was not available). In 1 family ( n = 6), 2 individuals harbored both the PAX9 c.592delG mutation and a heterozygous missense mutation (c.739C>T) in the MSX1 gene. Clinical characterization of families segregating a PAX9 mutation reveal that all affected individuals were missing the mandibular second molar and their maxillary central incisors are most susceptible to microdontia. A significant reduction of bitter taste perception was documented in individuals harboring PAX9 mutations ( n = 3). Functional studies revealed that PAX9 haploinsufficiency or a loss of function of the PAX9 protein underlies tooth agenesis.
Collapse
Affiliation(s)
- S-W Wong
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China.,2 Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,3 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - D Han
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - H Zhang
- 4 Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Y Liu
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - X Zhang
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - M Z Miao
- 2 Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Y Wang
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - N Zhao
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - L Zeng
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - B Bai
- 5 Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Y-X Wang
- 4 Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing, China
| | - H Liu
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China.,6 National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - S A Frazier-Bowers
- 7 Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - H Feng
- 1 Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China.,6 National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|