1
|
Sousa AC, Mcdermott G, Shields F, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Richardson SM, Domingos M, Maurício AC. Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications. Gels 2024; 10:831. [PMID: 39727588 DOI: 10.3390/gels10120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlueTM revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Grace Mcdermott
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Fraser Shields
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Animal and Veterinary Sciences, University Institute of Health Sciences (IUCS), Cooperative of Polytechnic and University Higher Education, CRL (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- Associated Laboratory for Green Chemistry (REQUIMTE-LAQV), Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Stephen M Richardson
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Chow T, Humble W, Lucarelli E, Onofrillo C, Choong PF, Di Bella C, Duchi S. Feasibility and barriers to rapid establishment of patient-derived primary osteosarcoma cell lines in clinical management. iScience 2024; 27:110251. [PMID: 39286504 PMCID: PMC11403063 DOI: 10.1016/j.isci.2024.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive primary bone tumor that has seen little improvement in survival rates in the past three decades. Preclinical studies are conducted on a small pool of commercial cell lines which may not fully reflect the genetic heterogeneity of this complex cancer, potentially hindering translatability of in vitro results. Developing a single-site laboratory protocol to rapidly establish patient-derived primary cancer cell lines (PCCL) within a clinically actionable time frame of a few weeks will have significant scientific and clinical ramifications. These PCCL can widen the pool of available cell lines for study while patient-specific data could derive therapeutic correlation. This endeavor is exceedingly challenging considering the proposed time constraints. By proposing key definitions and a clear theoretical framework, this evaluation of osteosarcoma cell line establishment methodology over the past three decades assesses feasibility by identifying barriers and suggesting solutions, thereby facilitating systematic experimentation and optimization.
Collapse
Affiliation(s)
- Thomas Chow
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - William Humble
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carmine Onofrillo
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Peter F Choong
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Claudia Di Bella
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Serena Duchi
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
3
|
Khanmohammadi M, Volpi M, Walejewska E, Olszewska A, Swieszkowski W. Printing of 3D biomimetic structures for the study of bone metastasis: A review. Acta Biomater 2024; 178:24-40. [PMID: 38458512 DOI: 10.1016/j.actbio.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Bone metastasis primarily occurs when breast, prostate, or lung cancers disseminate tumoral cells into bone tissue, leading to a range of complications in skeletal tissues and, in severe cases, paralysis resulting from spinal cord compression. Unfortunately, our understanding of pathophysiological mechanisms is incomplete and the translation of bone metastasis research into the clinic has been slow, mainly due to the lack of credible ex vivo and in vivo models to study the disease progression. Development of reliable and rational models to study how tumor cells become circulating cells and then invade and sequentially colonize the bone are in great need. Advances in tissue engineering technologies offers reliable 3D tissue alternatives which answer relevant research questions towards the understanding of cancer evolution and key functional properties of metastasis progression as well as prognosis of therapeutic approach. Here we performed an overview of cellular mechanisms involved in bone metastasis including a short summary of normal bone physiology and metastasis initiation and progression. Also, we comprehensively summarized current advances and methodologies in fabrication of reliable bone tumor models based on state-of-the-art printing technologies which recapitulate structural and biological features of native tissue. STATEMENT OF SIGNIFICANCE: This review provides a comprehensive summary of the collective findings in relation to various printed bone metastasis models utilized for investigating specific bone metastasis diseases, related characteristic functions and chemotherapeutic drug screening. These tumoral models are comprehensively evaluated and compared, in terms of their ability to recapitulate physiological metastasis microenvironment. Various biomaterials (natural and synthetic polymers and ceramic based substrates) and printing strategies and design architecture of models used for printing of 3D bone metastasis models are discussed here. This review clearly out-lines current challenges and prospects for 3D printing technologies in bone metastasis research by focusing on the required perspective models for clinical application of these technologies in chemotherapeutic drug screening.
Collapse
Affiliation(s)
- Mehdi Khanmohammadi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.
| | - Marina Volpi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Ewa Walejewska
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Alicja Olszewska
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.
| |
Collapse
|
4
|
Yun C, Kim SH, Kim KM, Yang MH, Byun MR, Kim JH, Kwon D, Pham HTM, Kim HS, Kim JH, Jung YS. Advantages of Using 3D Spheroid Culture Systems in Toxicological and Pharmacological Assessment for Osteogenesis Research. Int J Mol Sci 2024; 25:2512. [PMID: 38473760 DOI: 10.3390/ijms25052512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone differentiation is crucial for skeletal development and maintenance. Its dysfunction can cause various pathological conditions such as rickets, osteoporosis, osteogenesis imperfecta, or Paget's disease. Although traditional two-dimensional cell culture systems have contributed significantly to our understanding of bone biology, they fail to replicate the intricate biotic environment of bone tissue. Three-dimensional (3D) spheroid cell cultures have gained widespread popularity for addressing bone defects. This review highlights the advantages of employing 3D culture systems to investigate bone differentiation. It highlights their capacity to mimic the complex in vivo environment and crucial cellular interactions pivotal to bone homeostasis. The exploration of 3D culture models in bone research offers enhanced physiological relevance, improved predictive capabilities, and reduced reliance on animal models, which have contributed to the advancement of safer and more effective strategies for drug development. Studies have highlighted the transformative potential of 3D culture systems for expanding our understanding of bone biology and developing targeted therapeutic interventions for bone-related disorders. This review explores how 3D culture systems have demonstrated promise in unraveling the intricate mechanisms governing bone homeostasis and responses to pharmacological agents.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Mok Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joung-Hee Kim
- Department of Medical Beauty Care, Dongguk University Wise, Gyeongju 38066, Republic of Korea
| | - Doyoung Kwon
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Zhang P, Tian W, Li P, Zhang F, Qu G, Du X, Liu G, Niu X. The application of custom 3D-printed prostheses with ultra-short stems in the reconstruction of bone defects: a single center analysis. Front Bioeng Biotechnol 2024; 12:1349819. [PMID: 38333079 PMCID: PMC10850231 DOI: 10.3389/fbioe.2024.1349819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Objective: Considering the advantages and widespread presence of 3D-printing technology in surgical treatments, 3D-printed porous structure prostheses have been applied in a wide range of the treatments of bone tumor. In this research, we aimed to assess the application values of the 3D-printed custom prostheses with ultra-short stems for restoring bone defects and maintaining arthrosis in malignant bone tumors of lower extremities in children. Methods: Seven cases of pediatric patients were included in this study. In all cases, the prostheses were porous titanium alloy with ultra-short stems. MSTS 93 (Musculoskeletal Tumor Society) scores were recorded for the functional recovery of the limbs. VAS (Visual analogue scale) scores were utilized to assess the degree of painfulness for the patients. X-ray and MRI (magnetic resonance imaging) were applied to evaluate the bone integration, prostheses aseptic loosening, prostheses fracture, wound healing, and tumor recurrence during follow-up. Results: During follow-up, none of the patients developed any postoperative complications, including prostheses aseptic loosening, prostheses fracture, or tumor recurrence. Radiological examinations during the follow-up showed that prostheses implanted into the residual bone were stably fitted and bone defects were effectively reconstructed. The MSTS 93 scores were 24.9 ± 2.9 (20-28). VAS scores were decreased to 5.8 ± 1.2 (4.0-7.0). No statistically significant differences in leg length discrepancy were observed at the time of the last follow-up. Conclusion: 3D-printing technology can be effectively applied throughout the entire surgical treatment procedures of malignant bone tumors, offering stable foundations for the initial stability of 3D-printed prostheses with ultra-short stems through preoperative design, intraoperative precision operation, and personalized prosthesis matching. With meticulous postoperative follow-up, close monitoring of postoperative complications was ensured. These favorable outcomes indicate that the utilization of 3D-printed custom prostheses with ultra-short stems is a viable alternative for reconstructing bone defects. However, further investigation is warranted to determine the long-term effectiveness of the 3D-printing technique.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedic and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ma Y, Zhang B, Sun H, Liu D, Zhu Y, Zhu Q, Liu X. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors. Int J Nanomedicine 2023; 18:293-305. [PMID: 36683596 PMCID: PMC9851059 DOI: 10.2147/ijn.s390500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Bone tumors, including primary bone tumors, invasive bone tumors, metastatic bone tumors, and others, are one of the most clinical difficulties in orthopedics. Once these tumors have grown and developed in the bone system, they will interact with osteocytes and other environmental cells in the bone system's microenvironment, leading to the eventual damage of the bone's physical structure. Surgical procedures for bone tumors may result in permanent defects. The dual-efficacy of tissue regeneration and tumor treatment has made biomaterial scaffolds frequently used in treating bone tumors. 3D printing technology, also known as additive manufacturing or rapid printing prototype, is the transformation of 3D computer models into physical models through deposition, curing, and material fusion of successive layers. Adjustable shape, porosity/pore size, and other mechanical properties are an advantage of 3D-printed objects, unlike natural and synthetic material with fixed qualities. Researchers have demonstrated the significant role of diverse 3D-printed biological scaffolds in the treatment for bone tumors and the regeneration of bone tissue, and that they enhanced various performance of the products. Based on the characteristics of bone tumors, this review synthesized the findings of current researchers on the application of various 3D-printed biological scaffolds including bioceramic scaffold, metal alloy scaffold and nano-scaffold, in bone tumors and discussed the advantages, disadvantages, and future application prospects of various types of 3D-printed biological scaffolds. Finally, the future development trend of 3D-printed biological scaffolds in bone tumor is summarized, providing a theoretical foundation and a larger outlook for the use of biological scaffolds in the treatment of patients with bone tumors.
Collapse
Affiliation(s)
- Yihang Ma
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Boyin Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Huifeng Sun
- Department of Respiratory Medicine, No.964 Hospital of People's Liberation Army, Changchun, People's Republic of China
| | - Dandan Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuhang Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Qingsan Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiangji Liu
- Department of Spine Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
7
|
Abdollahzadeh H, Amoabediny G, Haghiralsadat F, Rahimi F, Adibfar A. Liposomal Doxorubicin Kinetic Study in an In vitro 2D and 3D Tumor Model for Osteosarcoma in a Perfusion Bioreactor. Pharm Nanotechnol 2023; 11:447-459. [PMID: 37138490 DOI: 10.2174/2211738511666230501202946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND In vivo drug screening in animal models is contrary to ethical values, costly and time-consuming. Traditional static in vitro models do not reflect the basic characteristics of bone tumor microenvironments; therefore, perfusion bioreactors, in particular, would be an applicable choice due to their advantages to regenerate versatile bone tumor models for studying in vitro novel drug delivery systems. METHODS In this study, an optimal drug formulation of liposomal doxorubicin was prepared, and the release kinetics of the drug and its toxicity effect on MG-63 bone cancer cell line were investigated in two-dimensional, static three-dimensional media on a PLGA/β-TCP scaffold and also in a dynamic media in a perfusion bioreactor. In this assay, the efficacy of the IC50 of this formulation which had been obtained in two-dimensional cell culture (= 0.1 μg/ml), was studied in static and dynamic threedimensional media after 3 and 7 days. Liposomes with good morphology and encapsulation efficiency of 95% had release kinetics of the Korsmeyer-Peppas model. RESULTS The results of cell growth before treatment and cell viability after treatment in all three environments were compared. Cell growth in 2D was rapid, while it was slow in static 3D conditions. In the dynamic 3D environment, it was significant compared to the static tumor models. Cell viability after 3 and 7 days from treatment was 54.73% and 13.39% in 2D conditions, 72.27% and 26.78% in the static 3D model, while 100% and 78.92% in the dynamic culture indicating the effect of drug toxicity over time, but drug resistance of 3D models compared to 2D culture. In the bioreactor, the formulation used in the mentioned concentration showed very small cytotoxicity demonstrating the dominance of mechanical stimuli on cell growth over drug toxicity. CONCLUSION Increasing drug resistance in 3D models compared to 2D models indicates the superiority of liposomal Dox over free form to reduce IC50 concentration.
Collapse
Affiliation(s)
- H Abdollahzadeh
- Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - G Amoabediny
- Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering at the University of Tehran, Tehran, Iran
| | - F Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - F Rahimi
- Medical Biotechnology Department, School of Medical Sciences, and Research Center and Laboratory of New Nano-technology, Shahed University, Tehran, Iran
| | - A Adibfar
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021; 16:91-109. [PMID: 34808032 DOI: 10.1002/term.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Silk worm (Bombyx Mori) protein, have been considered as potential materials for a variety of advanced engineering and biomedical applications for decades. Recently, silkworm silk has gained significant importance in research attention mainly because of its remarkable and exceptional mechanical properties. Silk has already been shown to have unique interactions with cells in tissues through bio-recognition units. The natural silk contains fibroin and sericin and has been used in various tissues of the human body (skin, bone, nerve, and so on). Besides, silk also still has anti-cancer, anti-tyrosinase, anti-coagulant, anti-oxidant, anti-bacterial, and anti-diabetic properties. This article is supposed to describe the diverse biomedical capabilities of B. Mori silk as the appropriate biomaterial among the assorted natural and artificial polymers that are presently accessible, and ideal for usage in regenerative medicine fields.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Rahimnejad M, Rezvaninejad R, Rezvaninejad R, França R. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Biomed Phys Eng Express 2021; 7. [PMID: 34438382 DOI: 10.1088/2057-1976/ac21ab] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
This review focuses on recently developed printable biomaterials for bone and mineralized tissue engineering. 3D printing or bioprinting is an advanced technology to design and fabricate complex functional 3D scaffolds, mimicking native tissue forin vivoapplications. We categorized the biomaterials into two main classes: 3D printing and bioprinting. Various biomaterials, including natural, synthetic biopolymers and their composites, have been studied. Biomaterial inks or bioinks used for bone and mineralized tissue regeneration include hydrogels loaded with minerals or bioceramics, cells, and growth factors. In 3D printing, the scaffold is created by acellular biomaterials (biomaterial inks), while in 3D bioprinting, cell-laden hydrogels (bioinks) are used. Two main classes of bioceramics, including bioactive and bioinert ceramics, are reviewed. Bioceramics incorporation provides osteoconductive properties and induces bone formation. Each biopolymer and mineral have its advantages and limitations. Each component of these composite biomaterials provides specific properties, and their combination can ameliorate the mechanical properties, bioactivity, or biological integration of the 3D printed scaffold. Present challenges and future approaches to address them are also discussed.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, Université de Montreal, Montreal, QC, Canada
| | - Raziyehsadat Rezvaninejad
- Department of Oral Medicine, Faculty of Dentistry, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | | | - Rodrigo França
- Department of Restorative Dentistry, College of Dentistry, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers (Basel) 2021; 13:cancers13164065. [PMID: 34439218 PMCID: PMC8391202 DOI: 10.3390/cancers13164065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.
Collapse
|
11
|
Mathematical modelling of the role of Endo180 network in the development of metastatic bone disease in prostate cancer. Comput Biol Med 2020; 117:103619. [PMID: 32072971 DOI: 10.1016/j.compbiomed.2020.103619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 12/29/2022]
Abstract
Metastatic bone disease (MBD) is a common complication of advanced cancer and recent research suggests that Endo180 expression is dysregulated through the TGFβ-TGFβR-SMAD2/3 signalling pathway during the invasion of tumour cells in the development of MBD. We here provide a model for the dysregulation of the Endo180 network to demonstrate its vital contribution to bone destruction as well as tumour cell growth. The model consisted of a set of ordinary differential equations and reconstructed variations in the bone cells, resultant bone volume, and biochemical factors involved in the TGFβ-TGFβR-SMAD2/3 signalling pathway over time. The model also investigated the underlying mechanism in which the change of TGFβ affects the TGFβ-TGFβR-SMAD2/3 signalling pathway and the resultant Endo180 expression in osteoblastic and tumour cells. The model links the appearance of tumour cells with the inhibition of TGFβ binding to its receptors on osteoblastic cells, to affect TGFβ-TGFβR-SMAD2/3 signalling and Endo180 expression. Temporal variation in bone cells, bone volume, and the biochemical factors involved in the TGFβ-TGFβR-SMAD2/3 pathway as demonstrated in the model simulations agree with published experimental data. The model can be refined based on further discoveries but allows the influence of Endo180 network dysregulation on bone remodelling in MBD to be established. This model could aid in the development of Endo180 targeted therapies for MBD in the future.
Collapse
|
12
|
Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1824. [PMID: 31195642 PMCID: PMC6600968 DOI: 10.3390/ma12111824] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
During the past two decades, tissue engineering and the regenerative medicine field have invested in the regeneration and reconstruction of pathologically altered tissues, such as cartilage, bone, skin, heart valves, nerves and tendons, and many others. The 3D structured scaffolds and hydrogels alone or combined with bioactive molecules or genes and cells are able to guide the development of functional engineered tissues, and provide mechanical support during in vivo implantation. Naturally derived and synthetic polymers, bioresorbable inorganic materials, and respective hybrids, and decellularized tissue have been considered as scaffolding biomaterials, owing to their boosted structural, mechanical, and biological properties. A diversity of biomaterials, current treatment strategies, and emergent technologies used for 3D scaffolds and hydrogel processing, and the tissue-specific considerations for scaffolding for Tissue engineering (TE) purposes are herein highlighted and discussed in depth. The newest procedures focusing on the 3D behavior and multi-cellular interactions of native tissues for further use for in vitro model processing are also outlined. Completed and ongoing preclinical research trials for TE applications using scaffolds and hydrogels, challenges, and future prospects of research in the regenerative medicine field are also presented.
Collapse
Affiliation(s)
- Sandra Pina
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Viviana P Ribeiro
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Catarina F Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - F Raquel Maia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
13
|
Camacho A, Jerez S. Bone metastasis treatment modeling via optimal control. J Math Biol 2018; 78:497-526. [DOI: 10.1007/s00285-018-1281-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/29/2018] [Indexed: 12/14/2022]
|
14
|
Lü WD, Sun RF, Hu YR, Lu JR, Gu L, Liu ZG, Lei GY, Qiang Z, Cai L. Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds. Acta Biomater 2018; 71:460-473. [PMID: 29555461 DOI: 10.1016/j.actbio.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
Acellular tumor extracellular matrices (ECMs) have limitations when employed as three-dimensional (3D) scaffolds for tumor engineering. In this work, methylene blue-mediated photooxidation was used to crosslink acellular tumor ECMs. Photooxidative crosslinking greatly increased the stiffness of acellular tumor ECM scaffolds but barely altered the Amide III band of the secondary structure of polypeptides and proteins. MCF-7, HepG2 and A549 cells cultured on photooxidatively crosslinked acellular tumor ECM scaffolds exhibited greater cell number per scaffold, more IL-8 and VEGF secretion, and increase migration and invasion abilities than cells cultured on uncrosslinked acellular tumor ECM scaffolds. The three tumor cell lines cultured on the stiffer photooxidatively crosslinked acellular matrices acquire mesenchymal properties (mesenchymal shift) and dedifferentiated phenotypes. Furthermore, the malignant phenotypes induced in vitro when cultured on the crosslinked scaffold promoted the in vivo tumor growth of BALB/c nude mice. Finally, the dedifferentiated cancer cells, including MCF-7, HepG2 and A549 cells, were less sensitive to chemotherapeutics. Thus, photooxidatively crosslinked acellular tumor ECMs have potentials as 3D tumor engineering scaffolds for cancer research. STATEMENT OF SIGNIFICANCE Natural material scaffolds have been successfully used as 3D matrices to study the in vitro tumor cell growth and mimic the in vivo tumor microenvironment. Acellular tumor ECMs are developed as 3D scaffolds for tumor engineering but have limitations in terms of elastic modulus and cell spheroid formation. Here we use methylene blue-mediated photooxidation to crosslink acellular tumor ECMs and investigate the influence of photooxidative crosslinking on structural, mechanical and biological characteristics of acellular tumor ECM scaffolds. It is the first study to evaluate the feasibility of photooxidatively crosslinked acellular tumor ECMs as 3D scaffolds for cancer research and the results are encouraging. Moreover, this study provides new research areas in regard to photodynamic therapy (PDT) for Cancer.
Collapse
Affiliation(s)
- Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ye-Rong Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Jan-Rong Lu
- Department of Pathology, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lu Gu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhi-Gang Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Guang-Yan Lei
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhun Qiang
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lin Cai
- Department of Pathology, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
15
|
Abstract
Breast cancer bone metastasis develops as the result of a series of complex interactions between tumor cells, bone marrow cells, and resident bone cells. The net effect of these interactions are the disruption of normal bone homeostasis, often with significantly increased osteoclast and osteoblast activity, which has provided a rational target for controlling tumor progression, with little or no emphasis on tumor eradication. Indeed, the clinical course of metastatic breast cancer is relatively long, with patients likely to experience sequential skeletal-related events (SREs), often over lengthy periods of time, even up to decades. These SREs include bone pain, fractures, and spinal cord compression, all of which may profoundly impair a patient's quality-of-life. Our understanding of the contributions of the host bone and bone marrow cells to the control of tumor progression has grown over the years, yet the focus of virtually all available treatments remains on the control of resident bone cells, primarily osteoclasts. In this perspective, our focus is to move away from the current emphasis on the control of bone cells and focus our attention on the hallmarks of bone metastatic tumor cells and how these differ from primary tumor cells and normal host cells. In our opinion, there remains a largely unmet medical need to develop and utilize therapies that impede metastatic tumor cells while sparing normal host bone and bone marrow cells. This perspective examines the impact of metastatic tumor cells on the bone microenvironment and proposes potential new directions for uncovering the important mechanisms driving metastatic progression in bone based on the hallmarks of bone metastasis.
Collapse
Affiliation(s)
- Rachelle W Johnson
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|