1
|
Kumar R. Computer model of non-Newtonian canalicular fluid flow in lacunar-canalicular system of bone tissue. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 38372236 DOI: 10.1080/10255842.2024.2317442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Brittle bone diseases are a global healthcare problem for orthopaedic clinicians, that reduces bone strength and promotes bone fracture risk. In vivo studies reported that loading-induced fluid flow through the lacunar-canalicular channel (LCS) of bone tissue inhibit such bone loss and encourages osteogenesis i.e. new bone formation. Canalicular fluid flow converts mechanical signals into biological signals and regulates bone reconstruction by releasing signalling molecules responsible for mechanotransduction. In-silico model mostly considers canalicular fluid is Newtonian, however, physiological canalicular fluid may be non-Newtonian in nature as it contains nutrients and supplements. Accordingly, this study attempts to develop a two-dimensional in-silico model to compute loading-induced non-Newtonian canalicular fluid flow in a complex LCS of bone tissue. Moreover, canalicular fluid is considered as a Jeffery fluid, that can easily be reduced to Newtonian fluid as a special case. The results show that physiological loading modulates the canalicular fluid flow, wall shear stress (WSS) and streamline in bone LCS. Fluid velocity and WSS increases with increase in non-dimensional frequency and non-Newtonian parameter (Jeffery fluid parameters) and reduce with change in permeability. The outcomes of this study may provide new insights in the role of mechanical loading-induced non-Newtonian canalicular fluid flow dynamics in bone LCS. The key findings of this study can be used to improve the understanding of osteocyte mechanobiology involved inside the bone tissue.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| |
Collapse
|
2
|
Wu X, Gong H, Hu X. Fluid-solid coupling numerical simulation of the effects of different doses of verapamil on cancellous bone in type 2 diabetic rats. BMC Musculoskelet Disord 2024; 25:123. [PMID: 38336651 PMCID: PMC10854077 DOI: 10.1186/s12891-024-07235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate the effects of four different doses of verapamil on the mechanical behaviors of solid and the characteristics of fluid flow in cancellous bone of distal femur of type 2 diabetes rats under dynamic external load. METHODS Based on the micro-CT images, the finite element models of cancellous bones and fluids at distal femurs of rats in control group, diabetes group, treatment groups VER 4, VER 12, VER 24, and VER 48 (verapamil doses of 4, 12, 24, and 48 mg/kg/day, respectively) were constructed. A sinusoidal time-varying displacement load with an amplitude of 0.8 μm and a period of 1s was applied to the upper surface of the solid region. Then, fluid-solid coupling numerical simulation method was used to analyze the magnitudes and distributions of von Mises stress, flow velocity, and fluid shear stress of cancellous bone models in each group. RESULTS The results for mean values of von Mises stress, flow velocity and FSS (t = 0.25s) were as follows: their values in control group were lower than those in diabetes group; the three parameters varied with the dose of verapamil; in the four treatment groups, the values of VER 48 group were the lowest, they were the closest to control group, and they were smaller than diabetes group. Among the four treatment groups, VER 48 group had the highest proportion of the nodes with FSS = 1-3 Pa on the surface of cancellous bone, and more areas in VER 48 group were subjected to fluid shear stress of 1-3 Pa for more than half of the time. CONCLUSION It could be seen that among the four treatment groups, osteoblasts on the cancellous bone surface in the highest dose group (VER 48 group) were more easily activated by mechanical loading, and the treatment effect was the best. This study might help in understanding the mechanism of verapamil's effect on the bone of type 2 diabetes mellitus, and provide theoretical guidance for the selection of verapamil dose in the clinical treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
3
|
Sefa S, Espiritu J, Ćwieka H, Greving I, Flenner S, Will O, Beuer S, Wieland DF, Willumeit-Römer R, Zeller-Plumhoff B. Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants. Bioact Mater 2023; 30:154-168. [PMID: 37575877 PMCID: PMC10412723 DOI: 10.1016/j.bioactmat.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
The utilization of biodegradable magnesium (Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application. One such alloy, magnesium-10 weight percent gadolinium (Mg-10Gd), has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing. Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration; however, it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium (Ti). A crucial aspect that remains unexplored is the impact of Mg-10Gd degradation on the bone microarchitecture. To address this, we employed hierarchical three-dimensional imaging using synchrotron radiation in conjunction with image-based finite element modelling. By using the methods outlined, the vascular porosity, lacunar porosity and the lacunar-canaliculi network (LCN) morphology of bone around Mg-10Gd in comparison to Ti in a rat model from 4 weeks to 20 weeks post-implantation was investigated. Our investigation revealed that within our observation period, the degradation of Mg-10Gd implants was associated with significantly lower (p < 0.05) lacunar density in the surrounding bone, compared to Ti. Remarkably, the LCN morphology and the fluid flow analysis did not significantly differ for both implant types. In summary, a more pronounced lower lacunae distribution rather than their morphological changes was detected in the surrounding bone upon the degradation of Mg-10Gd implants. This implies potential disparities in bone remodelling rates when compared to Ti implants. Our findings shed light on the intricate relationship between Mg-10Gd degradation and bone microarchitecture, contributing to a deeper understanding of the implications for successful osseointegration.
Collapse
Affiliation(s)
- Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Imke Greving
- Institute of Materials Physics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Silja Flenner
- Institute of Materials Physics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Susanne Beuer
- Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen, Germany
| | - D.C Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | |
Collapse
|
4
|
Wang Y, Dong H, Yan Y, Yu J, Wu X, Wang Y, Xue Y, Wang X, Wei X, Li P, Chen W. Biomechanical analysis of a lacunar-canalicular system under different cyclic displacement loading. Comput Methods Biomech Biomed Engin 2023; 26:1806-1821. [PMID: 36377250 DOI: 10.1080/10255842.2022.2145889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
The objective of this study is to use the finite element (FE) method to predict the mechanical signals (interstitial fluid velocity, strain, pore pressure, and pore fluid velocity) produced by osteocyte during physiological activities. The model predicts that the amplitude and distribution of the mechanical signals are mainly affected by the loading rate. The magnitude of mechanical signals in the lacunar-canalicular system increases as the amplitude, frequency and amount of direction of load increase. Collagen hillocks can effectively amplify strain signals at the process. The established model can be used for studying the mechanism of bone mechanotransduction at the micro-level.
Collapse
Affiliation(s)
- Yan Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hao Dong
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yang Yan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jianhao Yu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaogang Wu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Second hospital of Shanxi Medical University, Taiyuan, China
| | - Yanqin Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanru Xue
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiyu Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Second hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Second hospital of Shanxi Medical University, Taiyuan, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
5
|
Abstract
PURPOSE OF THE REVIEW Bone adapts structure and material properties in response to its mechanical environment, a process called mechanoadpatation. For the past 50 years, finite element modeling has been used to investigate the relationships between bone geometry, material properties, and mechanical loading conditions. This review examines how we use finite element modeling in the context of bone mechanoadpatation. RECENT FINDINGS Finite element models estimate complex mechanical stimuli at the tissue and cellular levels, help explain experimental results, and inform the design of loading protocols and prosthetics. FE modeling is a powerful tool to study bone adaptation as it complements experimental approaches. Before using FE models, researchers should determine whether simulation results will provide complementary information to experimental or clinical observations and should establish the level of complexity required. As imaging technics and computational capacity continue increasing, we expect FE models to help in designing treatments of bone pathologies that take advantage of mechanoadaptation of bone.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
| |
Collapse
|
6
|
Boucetta A, Ramtani S, Garzón-Alvarado DA. Both network architecture and micro cracks effects on lacuno-canalicular liquid flow efficiency within the context of multiphysics approach for bone remodeling. J Mech Behav Biomed Mater 2023; 141:105780. [PMID: 36989871 DOI: 10.1016/j.jmbbm.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
When physical forces are applied to bone, its mechanical adaptive behaviors change according to the microarchitecture configuration. This leads to changes in biological and physical thresholds in the remodeling cell population, involving sensor cells (osteocytes) interacting with each other and changes in osteocyte shape due to variation in lacunar shape. The resulting alterations in fluid flow leads to changes in the membrane electrical potential and shear stress. Eventual creation of microcracks, may lead in turn to modify cell activity. In contrast, the redundancy in the lacuno canalicular network (LCN) interconnectivity maintains partial flow. Our goal was to investigate the role of fluid flow in LCN by proposing a model of electro-mechanical energy spread through inhomogeneous microarchitectures. We focused on mechano-sensitivity to changes in load-induced flow impacted by neighboring micro cracks and quantifying its critical role in changing, velocity, shear stress and orientation of liquid mass transportation from one cell to another. To enhance the concept of intricacy LCN micro-structure to fluid flow, we provide a new combined effects factor considered as osteocytes sensor efficiency. We customized an influence function for each osteocyte, coupling: in one hand, the spatial distribution within remodeling influence areas, conducting a significant fluid spread, leading hydro-dynamic behavior and impacted further by presence of micro cracks and; in other hand, the fluid electro kinetic behavior. As an attempt to fill the limitations stated by many of the recent studies, we reveal in numerical simulation, some results which cannot be measured in vitro/in vivo studies. Numerical calculations were performed in order to evaluate, among many others, how liquid flow conditions changes between lacunas, how the orientation and the magnitude of the governing flow in LCN can regulate osteocytes efficiency. In addition to be regulated by osteocytes, a direct effects of fluid flow are also acting on osteoblast activity. In summary, this new approach considers mechano-sensitivity in relation to liquid flow dynamic and suggests additional pathway for Osseo integration via osteoblast regulation. However, this novel modeling approach may help improve the mapping and design bone scaffolds and/or selection of scaffold implantation regions.
Collapse
Affiliation(s)
- Abdelkader Boucetta
- Université Sorbonne Paris Nord, CSPBA-LBPS, UMR CNRS 7244, Inst Galilee, 99 Ave JB Clement, Villetaneuse, France; GE VERNOVA, SS&O-OPS-O&M EMEA Regions, Algiers, Algeria.
| | - Salah Ramtani
- Université Sorbonne Paris Nord, CSPBA-LBPS, UMR CNRS 7244, Inst Galilee, 99 Ave JB Clement, Villetaneuse, France.
| | - Diego A Garzón-Alvarado
- Universidad Nacional de Colombia, Biomimetics Laboratory-Biotechnology Institute, Bogota, 571, Republic of Colombia.
| |
Collapse
|