1
|
Yu Z, Wang RR, Wei W, Liu LY, Wen CB, Yu SG, Guo XL, Yang J. A coordinate-based meta-analysis of acupuncture for chronic pain: Evidence from fMRI studies. Front Neurosci 2022; 16:1049887. [PMID: 36590302 PMCID: PMC9795831 DOI: 10.3389/fnins.2022.1049887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background Chronic pain (CP) patients tend to represent aberrant functional brain activity. Acupuncture is an effective clinical treatment for CP, and some fMRI studies were conducted to discover the alternation of brain regions after acupuncture therapy for CP. However, the heterogeneity of neuroimaging studies has prevented researchers from systematically generalizing the central mechanisms of acupuncture in the treatment of CP. Methods We searched bibliographic databases, including PubMed, EMBASE, PsycINFO, Web of Science Core Collection, ScienceDirect, China Academic Journal Network Publishing Database, etc., and trials registration platforms (From inception to September 1st, 2022). Two independent researchers assessed the study's bias and quality. Furthermore, activation likelihood estimation (ALE) analysis was applied to explore aberrant brain functional activity and acupuncture's central mechanism for CP. Results Totally 14 studies with 524 CP patients were included in the study. ALE analysis showed that CP patients presented with decreased ALFF/ReHo in the precuneus, posterior cingulate cortex, right inferior parietal lobule, right superior temporal gyrus, cingulate gyrus, superior frontal gyrus, left medial frontal gyrus including medial prefrontal gurus, left middle frontal gyrus. Conclusion This ALE meta-analysis pointed out that acupuncture could modulate the default mode network, the frontoparietal network to treat CP. This provided a systematic summary of the neuroimage biomarker of acupuncture for the treatment of CP. Systematic review registration PROSPERO, identifier: CRD42021239633.
Collapse
Affiliation(s)
- Zheng Yu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong-Rong Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wei
- Traditional Chinese Medicine Department, Chengdu Xinan Gynecological Hospital, Chengdu, China
| | - Li-Ying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan-Biao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Guang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Li Guo
- Traditional Chinese Medicine Department, Chengdu Xinan Gynecological Hospital, Chengdu, China,Xiao-Li Guo
| | - Jie Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Jie Yang
| |
Collapse
|
2
|
Abstract
Pain is an unpleasant sensory and emotional experience. Understanding the neural mechanisms of acute and chronic pain and the brain changes affecting pain factors is important for finding pain treatment methods. The emergence and progress of non-invasive neuroimaging technology can help us better understand pain at the neural level. Recent developments in identifying brain-based biomarkers of pain through advances in advanced imaging can provide some foundations for predicting and detecting pain. For example, a neurologic pain signature (involving brain regions that receive nociceptive afferents) and a stimulus intensity-independent pain signature (involving brain regions that do not show increased activity in proportion to noxious stimulus intensity) were developed based on multivariate modeling to identify processes related to the pain experience. However, an accurate and comprehensive review of common neuroimaging techniques for evaluating pain is lacking. This paper reviews the mechanism, clinical application, reliability, strengths, and limitations of common neuroimaging techniques for assessing pain to promote our further understanding of pain.
Collapse
Affiliation(s)
- Jing Luo
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui-Qi Zhu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Bo Gou
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China.
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
3
|
Poply K, Haroon A, Ganeshan B, Nikolic S, Sharma S, Ahmad A, Ellamushi H, Parsai A, Mehta V. Dynamic Brain Imaging Response to Spinal Cord Stimulation Differential Frequencies DiFY SCS-PET clinical trial. Neuromodulation 2022:S1094-7159(22)00773-5. [DOI: 10.1016/j.neurom.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 10/14/2022]
|
4
|
Ma J, Wu JJ, Hua XY, Zheng MX, Huo BB, Xing XX, Feng SY, Li B, Xu J. Alterations in brain structure and function in patients with osteonecrosis of the femoral head: a multimodal MRI study. PeerJ 2021; 9:e11759. [PMID: 34484979 PMCID: PMC8381875 DOI: 10.7717/peerj.11759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pain, a major symptom of osteonecrosis of the femoral head (ONFH), is a complex sensory and emotional experience that presents therapeutic challenges. Pain can cause neuroplastic changes at the cortical level, leading to central sensitization and difficulties with curative treatments; however, whether changes in structural and functional plasticity occur in patients with ONFH remains unclear. Methods A total of 23 ONFH inpatients who did not undergo surgery (14 males, nine females; aged 55.61 ± 13.79 years) and 20 controls (12 males, eight females; aged 47.25 ± 19.35 years) were enrolled. Functional indices of the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and a structural index of tract-based spatial statistics (TBSS) were calculated for each participant. The probability distribution of fiber direction was determined according to the ALFF results. Results ONFH patients demonstrated increased ALFF in the bilateral dorsolateral superior frontal gyrus, right medial superior frontal gyrus, right middle frontal gyrus, and right supplementary motor area. In contrast, ONFH patients showed decreased ReHo in the left superior parietal gyrus and right inferior temporal gyrus. There were no significant differences in TBSS or probabilistic tractography. Conclusion These results indicate cerebral pain processing in ONFH patients. It is advantageous to use functional magnetic resonance imaging to better understand pain pathogenesis and identify new therapeutic targets in ONFH patients.
Collapse
Affiliation(s)
- Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, China.,Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng-Yi Feng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Li
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Ma J, Hua XY, Zheng MX, Wu JJ, Huo BB, Xing XX, Feng SY, Li B, Xu JG. Surface-based map plasticity of brain regions related to sensory motor and pain information processing after osteonecrosis of the femoral head. Neural Regen Res 2021; 17:806-811. [PMID: 34472479 PMCID: PMC8530129 DOI: 10.4103/1673-5374.322471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex. However, most studies are volume-based which may lead to inaccurate anatomical positioning of functional data. The methods that work on the cortical surface may be more sensitive than those using the full brain volume and thus be more suitable for map plasticity study. In this prospective cross-sectional study performed in Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China, 20 patients with osteonecrosis of the femoral head (12 males and 8 females, aged 56.80 ± 13.60 years) and 20 healthy controls (9 males and 11 females, aged 54.56 ± 10.23 years) were included in this study. Data of resting-state functional magnetic resonance imaging were collected. The results revealed that compared with healthy controls, compared with the healthy controls, patients with osteonecrosis of the femoral head (ONFH) showed significantly increased surface-based regional homogeneity (ReHo) in areas distributed mainly in the left dorsolateral prefrontal cortex, frontal eye field, right frontal eye field, and the premotor cortex and decreased surface-based ReHo in the right primary motor cortex and primary sensory cortex. Regions showing significant differences in surface-based ReHo values between the healthy controls and patients with ONFH were defined as the regions of interests. Seed-based functional connectivity was performed to investigate interregional functional synchronization. When the areas with decreased surface-based ReHo in the frontal eye field and right premotor cortex were used as the regions of interest, compared with the healthy controls, the patients with ONFH displayed increased functional connectivity in the right middle frontal cortex and right inferior parietal cortex and decreased functional connectivity in the right precentral cortex and right middle occipital cortex. Compared with healthy controls, patients with ONFH showed significantly decreased cortical thickness in the para-insular area, posterior insular area, anterior superior temporal area, frontal eye field and supplementary motor cortex and reduced volume of subcortical gray matter nuclei in the right nucleus accumbens. These findings suggest that hip disorder patients showed cortical plasticity changes, mainly in sensorimotor- and pain-related regions. This study was approved by the Medical Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (approval No. 2018-041) on August 1, 2018.
Collapse
Affiliation(s)
- Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- School of Rehabilitation Science; Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng-Yi Feng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Li
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Iyer P, Lee YC. Why It Hurts: The Mechanisms of Pain in Rheumatoid Arthritis. Rheum Dis Clin North Am 2021; 47:229-244. [PMID: 33781492 DOI: 10.1016/j.rdc.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pain is a near-universal feature of rheumatoid arthritis, but peripheral joint inflammation may not suffice to explain the etiology of pain in all patients with rheumatoid arthritis. Inflammation in rheumatoid arthritis releases several algogens that may generate pain. Also, central nervous system processes may play a crucial role in the regulation and perpetuation of pain. Several methods for assessing pain in rheumatoid arthritis exist, and recently the role of assessing therapeutics in treating specific etiologies of pain has gained interest.
Collapse
Affiliation(s)
- Priyanka Iyer
- Division of Rheumatology, Department of Internal Medicine, University of California Irvine, Irvine, CA, USA.
| | | |
Collapse
|
7
|
Zetterman T, Markkula R, Partanen JV, Miettinen T, Estlander AM, Kalso E. Muscle activity and acute stress in fibromyalgia. BMC Musculoskelet Disord 2021; 22:183. [PMID: 33583408 PMCID: PMC7883576 DOI: 10.1186/s12891-021-04013-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background Fibromyalgia (FM) patients are likely to differ from healthy controls in muscle activity and in reactivity to experimental stress. Methods We compared psychophysiological reactivity to cognitive stress between 51 female FM patients aged 18 to 65 years and 31 age- and sex-matched healthy controls. They underwent a 20-minute protocol consisting of three phases of relaxation and two phases of cognitive stress. We recorded surface electromyography normalized to maximum voluntary muscle contraction (%EMG), the percentage of time with no muscle activity (EMG rest time), and subjective pain and stress intensities. We compared group reactivity using linear modelling and adjusted for psychological and life-style factors. Results The FM patients had a significantly higher mean %EMG (2.2 % vs. 1.0 %, p < 0.001), pain intensity (3.6 vs. 0.2, p < 0.001), and perceived stress (3.5 vs. 1.4, p < 0.001) and lower mean EMG rest time (26.7 % vs. 47.2 %, p < 0.001). In the FM patients, compared with controls, the pain intensity increased more during the second stress phase (0.71, p = 0.028), and the %EMG decreased more during the final relaxation phase (-0.29, p = 0.036). Within the FM patients, higher BMI predicted higher %EMG but lower stress. Leisure time physical activity predicted lower %EMG and stress and higher EMG rest time. Higher perceived stress predicted lower EMG rest time, and higher trait anxiety predicted higher pain and stress overall. Conclusions Our results suggest that repeated cognitive stress increases pain intensity in FM patients. FM patients also had higher resting muscle activity, but their muscle activity did not increase with pain. Management of stress and anxiety might help control FM flare-ups. Trial registration Retrospectively registered on ClinicalTrials.gov (NCT03300635).
Collapse
Affiliation(s)
- Teemu Zetterman
- Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University and Helsinki University Hospital, Helsinki, Finland. .,City of Vantaa Health Centre, Vantaa, Finland.
| | - Ritva Markkula
- Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Juhani V Partanen
- HUS, Imaging Centre, Clinical Neurophysiology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Teemu Miettinen
- Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Ann-Mari Estlander
- Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Eija Kalso
- Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University and Helsinki University Hospital, Helsinki, Finland.,SLEEPWELL Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Chronic noncancer pain is not associated with accelerated brain aging as assessed by structural magnetic resonance imaging in patients treated in specialized outpatient clinics. Pain 2021; 161:641-650. [PMID: 31764393 DOI: 10.1097/j.pain.0000000000001756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic pain is often associated with changes in brain structure and function, and also cognitive deficits. It has been noted that these chronic pain-related alterations may resemble changes found in healthy aging, and thus may represent accelerated or premature aging of the brain. Here, we test the hypothesis that patients with chronic noncancer pain demonstrate accelerated brain aging compared with healthy control subjects. The predicted brain age of 59 patients with chronic pain (mean chronological age ± SD: 53.0 ± 9.0 years; 43 women) and 60 pain-free healthy controls (52.6 ± 9.0 years; 44 women) was determined using the software brainageR. This software segments the individual T1-weighted structural MR images into gray and white matter and compares gray and white matter images with a large (n = 2001) training set of structural images, using machine learning. Finally, brain age delta, which is the predicted brain age minus chronological age, was calculated and compared across groups. This study provided no evidence for the hypothesis that chronic pain is associated with accelerated brain aging (Welch t test, P = 0.74, Cohen's d = 0.061). A Bayesian independent-samples t test indicated moderate evidence in favor of the null hypothesis (BF01 = 4.875, ie, group means were equal). Our results provide indirect support for recent models of pain-related changes of brain structure, brain function, and cognitive functions. These models postulate network-specific maladaptive plasticity, rather than widespread or global neural degeneration.
Collapse
|
9
|
de Melo GA, de Oliveira EA, Dos Santos Andrade SMM, Fernández-Calvo B, Torro N. Comparison of two tDCS protocols on pain and EEG alpha-2 oscillations in women with fibromyalgia. Sci Rep 2020; 10:18955. [PMID: 33144646 PMCID: PMC7609530 DOI: 10.1038/s41598-020-75861-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has been used as an alternative treatment for pain reduction in fibromyalgia. In this study, in addition to behavioral measures, we analyzed oscillations in alpha 2 frequency band in the frontal, occipital, and parietal regions, in response to the application of two neuromodulation protocols in fibromyalgia. The study was a randomized, double-blind, placebo-controlled clinical trial with 31 women diagnosed with fibromyalgia. The participants were allocated to three groups with the anodic stimulation applied on the left motor cortex: Group 1, for five consecutive days; Group 2, for 10 consecutive days; and Group 3, sham stimulation for five consecutive days. Statistical analysis showed a reduction in pain intensity after treatment for groups in general [F (1.28) = 8.02; p = 0.008; η2 = 0.223], in addition to a reduction in alpha 2 in the frontal (p = 0.039; d = 0.384) and parietal (p = 0.021; d = 0.520) regions after the treatment on five consecutive days. We conclude that neuromodulation protocols produced similar effects on pain reduction, but differed with respect to the changes in the alpha 2 frequency band in the frontal and parietal regions.
Collapse
Affiliation(s)
- Géssika Araújo de Melo
- Department of Psychology, Federal University of Paraiba, João Pessoa, 58051-900, Brazil.
| | | | | | - Bernardino Fernández-Calvo
- Department of Psychology, Federal University of Paraiba, João Pessoa, 58051-900, Brazil
- Department of Psychology, University of Córdoba, 14071, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Nelson Torro
- Department of Psychology, Federal University of Paraiba, João Pessoa, 58051-900, Brazil
| |
Collapse
|
10
|
Lloyd DM, Wittkopf PG, Arendsen LJ, Jones AK. Is Transcranial Direct Current Stimulation (tDCS) Effective for the Treatment of Pain in Fibromyalgia? A Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2020; 21:1085-1100. [DOI: 10.1016/j.jpain.2020.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 01/24/2023]
|
11
|
Subanesthetic Dose of Ketamine Improved CFA-induced Inflammatory Pain and Depression-like Behaviors Via Caveolin-1 in Mice. J Neurosurg Anesthesiol 2019; 32:359-366. [DOI: 10.1097/ana.0000000000000610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Karateev AE, Nasonov EL. Chronic pain and central sensitization in immuno-inflammatory rheumatic diseases: pathogenesis, clinical manifestations, the possibility of using targeted disease modifying antirheumatic drugs. RHEUMATOLOGY SCIENCE AND PRACTICE 2019. [DOI: 10.14412/1995-4484-2019-197-209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic pain is one of the main manifestations of immuno-inflammatory rheumatic diseases (IIRD), such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA), which determines the severity of suffering, reduced quality of life and disability of patients. Unfortunately, the use of synthetic and biological disease modifying antirheumatic drugs, as well as non-steroidal anti-inflammatory drugs does not always provide sufficient control of pain in IIRD, even when it is possible to achieve a significant reduction in inflammatory activity. The reason for this is the complex mechanism of chronic pain. It includes not onlystimulation of pain receptors caused by damage of the elements of the musculoskeletal system, but also a change in the perception of pain associated with the phenomenon of central sensitization (CS). CS is characterized by a significant and persistent increase in the sensitivity of nociceptive neurons to pain and nonpain stimuli. One of the main theories of the CS development consider this phenomenon as an inflammatory reaction of the neuronenvironmentthe activation of astrocytes and microglial cells, local hyperproduction of cytokines, inflammatory mediators and neurotrophic factors. Factors contributing to the development of CS in IIRD are obesity, depression and anxiety, damage of the somatosensory system, insufficient relief of pain in the onset of the disease. Clinical manifestations of CS in IIRD is hyperalgesia, allodinia, «expanded pain» and secondary fibromyalgia. An important role in the development of chronic pain and CS plays the intracellular inflammatory pathway JAK-STAT. Therefore, JAK inhibitors, such as tofacitinib, used in RA and PsA, can also be considered as an effective means of controlling chronic pain in these diseases.
Collapse
Affiliation(s)
| | - E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Pain in rheumatoid arthritis (RA) may be due to different etiologies, ranging from peripheral inflammation to dysregulation of central nervous system (CNS) processing. This review evaluates relevant literature published on RA pain mechanisms in recent years. RECENT FINDINGS Despite successes of disease-modifying antirheumatic drugs (DMARDs), pain persists for many RA patients. Studies involving patient-reported outcomes, quantitative sensory testing, and neuroimaging indicate that, in addition to joint inflammation, abnormalities in CNS pain processing may contribute to pain. Some DMARDs (e.g., janus kinus inhibitors) may work via multiple pathways to decrease pain. Adjunctive treatments (e.g., antidepressants, antiepileptics) may also be useful in managing pain in RA patients with well-controlled disease. Both peripheral and central mechanisms play key roles in the expression of pain in RA. To effectively manage pain, physicians need accurate assessment tools to identify the pathways involved in each patient so that treatments may be appropriately targeted.
Collapse
Affiliation(s)
- Angela Zhang
- Commonwealth Honors College University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yvonne C Lee
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
14
|
Abstract
Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain's role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained.
Collapse
Affiliation(s)
- Debbie L Morton
- Human Pain Research Group, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Javin S Sandhu
- Human Pain Research Group, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Anthony Kp Jones
- Human Pain Research Group, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Meneses FM, Queirós FC, Montoya P, Miranda JGV, Dubois-Mendes SM, Sá KN, Luz-Santos C, Baptista AF. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest. Front Hum Neurosci 2016; 10:395. [PMID: 27540360 PMCID: PMC4972828 DOI: 10.3389/fnhum.2016.00395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F(1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F(1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F(1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.
Collapse
Affiliation(s)
- Francisco M Meneses
- Graduate Program in Medicine and Health, School of Medicine, Federal University of BahiaSalvador, Brazil; Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of BahiaSalvador, Brazil
| | - Fernanda C Queirós
- Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of Bahia Salvador, Brazil
| | - Pedro Montoya
- Department of Psychology, Research Institute of Health Sciences, University of Balearic Islands Palma de Mallorca, Spain
| | - José G V Miranda
- Nucleus of Innovation and Technology in Rehabilitation, Institute of Physics, Federal University of Bahia Salvador, Brazil
| | - Selena M Dubois-Mendes
- Graduate Program in Medicine and Health, School of Medicine, Federal University of BahiaSalvador, Brazil; Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of BahiaSalvador, Brazil; Physiotherapy Program, Bahia School of Medicine and Public HealthSalvador, Brazil
| | - Katia N Sá
- Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of BahiaSalvador, Brazil; Physiotherapy Program, Bahia School of Medicine and Public HealthSalvador, Brazil
| | - Cleber Luz-Santos
- Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of Bahia Salvador, Brazil
| | - Abrahão F Baptista
- Graduate Program in Medicine and Health, School of Medicine, Federal University of BahiaSalvador, Brazil; Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of BahiaSalvador, Brazil; Physiotherapy Program, Bahia School of Medicine and Public HealthSalvador, Brazil
| |
Collapse
|
16
|
Flodin P, Martinsen S, Altawil R, Waldheim E, Lampa J, Kosek E, Fransson P. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis. Front Hum Neurosci 2016; 10:107. [PMID: 27014038 PMCID: PMC4791375 DOI: 10.3389/fnhum.2016.00107] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients.
Collapse
Affiliation(s)
- Pär Flodin
- Department of Clinical Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Sofia Martinsen
- Department of Clinical Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Reem Altawil
- Department of Medicine, Rheumatology Unit, CMM, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| | - Eva Waldheim
- Department of Medicine, Rheumatology Unit, CMM, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, CMM, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
17
|
Sergeeva M, Rech J, Schett G, Hess A. Response to peripheral immune stimulation within the brain: magnetic resonance imaging perspective of treatment success. Arthritis Res Ther 2015; 17:268. [PMID: 26477946 PMCID: PMC4610054 DOI: 10.1186/s13075-015-0783-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic peripheral inflammation in diseases such as rheumatoid arthritis leads to alterations in central pain processing and consequently to mood disorders resulting from sensitization within the central nervous system and enhanced vulnerability of the medial pain pathway. Proinflammatory cytokines such as tumor necrosis factor (TNF) alpha play an important role herein, and therapies targeting their signaling (i.e., anti-TNF therapies) have been proven to achieve good results. However, the phenomenon of rapid improvement in the patients’ subjective feeling after the start of TNFα neutralization remained confusing, because it was observed long before any detectable signs of inflammation decline. Functional magnetic resonance imaging (fMRI), enabling visualization of brain activity upon peripheral immune stimulation with anti-TNF, has helped to clarify this discrepancy. Moreover, fMRI appeared to work as a reliable tool for predicting prospective success of anti-TNF therapy, which is valuable considering the side effects of the drugs and the high therapy costs. This review, which is mainly guided by neuroimaging studies of the brain, summarizes the state-of-the-art knowledge about communication between the immune system and the brain and its impact on subjective well-being, addresses in more detail the outcome of the abovementioned anti-TNF fMRI studies (rapid response to TNFα blockade within the brain pain matrix and differences in brain activation patterns between prospective therapy responders and nonresponders), and discusses possible mechanisms for the latter phenomena and the predictive power of fMRI.
Collapse
Affiliation(s)
- Marina Sergeeva
- Institut for Experimental Pharmacology, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany.
| | - Jürgen Rech
- Department of Internal Medicine III, Friedrich Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Georg Schett
- Department of Internal Medicine III, Friedrich Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Andreas Hess
- Institut for Experimental Pharmacology, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany.
| |
Collapse
|
18
|
Walsh DA, McWilliams DF. Mechanisms, impact and management of pain in rheumatoid arthritis. Nat Rev Rheumatol 2014; 10:581-92. [PMID: 24861185 DOI: 10.1038/nrrheum.2014.64] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
People with rheumatoid arthritis (RA) identify pain as their most important symptom, one that often persists despite optimal control of inflammatory disease. RA pain arises from multiple mechanisms, involving inflammation, peripheral and central pain processing and, with disease progression, structural change within the joint. Consequently, RA pain has a wide range of characteristics-constant or intermittent, localized or widespread-and is often associated with psychological distress and fatigue. Dominant pain mechanisms in an individual are identified by critical evaluation of clinical symptoms and signs, and by laboratory and imaging tests. Understanding these mechanisms is essential for effective management, although evidence from preclinical models should be interpreted with caution. A range of pharmacological analgesic and immunomodulatory agents, psychological interventions and surgery may help manage RA pain. Pain contributes importantly to the clinical assessment of inflammatory disease activity, and noninflammatory components of RA pain should be considered when gauging eligibility for or response to biologic agents. Further randomized controlled trials are required to determine the optimal usage of analgesics in RA, and novel agents with greater efficacy and lower propensity for adverse events are urgently needed. Meanwhile, targeted use of existing treatments could reduce pain in people with RA.
Collapse
Affiliation(s)
- David A Walsh
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Daniel F McWilliams
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| |
Collapse
|
19
|
Sundermann B, Burgmer M, Pogatzki-Zahn E, Gaubitz M, Stüber C, Wessolleck E, Heuft G, Pfleiderer B. Diagnostic classification based on functional connectivity in chronic pain: model optimization in fibromyalgia and rheumatoid arthritis. Acad Radiol 2014; 21:369-77. [PMID: 24507423 DOI: 10.1016/j.acra.2013.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 01/09/2023]
Abstract
RATIONALE AND OBJECTIVES The combination of functional magnetic resonance imaging (fMRI) of the brain with multivariate pattern analysis (MVPA) has been proposed as a possible diagnostic tool. Goal of this investigation was to identify potential functional connectivity (FC) differences in the salience network (SN) and default mode network (DMN) between fibromyalgia syndrome (FMS), rheumatoid arthritis (RA), and controls (HC) and to evaluate the diagnostic applicability of derived pattern classification approaches. MATERIALS AND METHODS The resting period during an fMRI examination was retrospectively analyzed in women with FMS (n = 17), RA (n = 16), and HC (n = 17). FC was calculated for SN and DMN subregions. Classification accuracies of discriminative MVPA models were evaluated with cross-validation: (1) inferential test of a single method, (2) explorative model optimization. RESULTS No inferentially tested model was able to classify subjects with statistically significant accuracy. However, the diagnostic ability for the differential diagnostic problem exhibited a trend to significance (accuracy: 69.7%, P = .086). Optimized models in the explorative analysis reached accuracies up to 73.5% (FMS vs. HC), 78.8% (RA vs. HC), and 78.8% (FMS vs. RA) whereas other models performed at or below chance level. Comparable support vector machine approaches performed above average for all three problems. CONCLUSIONS Observed accuracies are not sufficient to reliably differentiate between FMS and RA for diagnostic purposes. However, some indirect evidence in support of the feasibility of this approach is provided. This exploratory analysis constitutes a fundamental model optimization effort to be based on in further investigations.
Collapse
|
20
|
Regional neuroplastic brain changes in patients with chronic inflammatory and non-inflammatory visceral pain. PLoS One 2014; 9:e84564. [PMID: 24416245 PMCID: PMC3885578 DOI: 10.1371/journal.pone.0084564] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/24/2013] [Indexed: 12/29/2022] Open
Abstract
Regional cortical thickness alterations have been reported in many chronic inflammatory and painful conditions, including inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS), even though the mechanisms underlying such neuroplastic changes remain poorly understood. In order to better understand the mechanisms contributing to grey matter changes, the current study sought to identify the differences in regional alterations in cortical thickness between healthy controls and two chronic visceral pain syndromes, with and without chronic gut inflammation. 41 healthy controls, 11 IBS subjects with diarrhea, and 16 subjects with ulcerative colitis (UC) underwent high-resolution T1-weighted magnetization-prepared rapid acquisition gradient echo scans. Structural image preprocessing and cortical thickness analysis within the region of interests were performed by using the Laboratory of Neuroimaging Pipeline. Group differences were determined using the general linear model and linear contrast analysis. The two disease groups differed significantly in several cortical regions. UC subjects showed greater cortical thickness in anterior cingulate cortical subregions, and in primary somatosensory cortex compared with both IBS and healthy subjects. Compared with healthy subjects, UC subjects showed lower cortical thickness in orbitofrontal cortex and in mid and posterior insula, while IBS subjects showed lower cortical thickness in the anterior insula. Large effects of correlations between symptom duration and thickness in the orbitofrontal cortex and postcentral gyrus were only observed in UC subjects. The findings suggest that the mechanisms underlying the observed gray matter changes in UC subjects represent a consequence of peripheral inflammation, while in IBS subjects central mechanisms may play a primary role.
Collapse
|
21
|
Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A. Osteoarthritis year 2013 in review: imaging. Osteoarthritis Cartilage 2013; 21:1425-35. [PMID: 23891696 DOI: 10.1016/j.joca.2013.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/24/2013] [Accepted: 07/13/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE To review recent original research publications related to imaging of osteoarthritis (OA) and identify emerging trends and significant advances. METHODS Relevant articles were identified through a search of the PubMed database using the query terms "OA" in combination with "imaging", "radiography", "MRI", "ultrasound", "computed tomography", and "nuclear medicine"; either published or in press between March 2012 and March 2013. Abstracts were reviewed to exclude review articles, case reports, and studies not focused on imaging using routine clinical imaging measures. RESULTS Initial query yielded 932 references, which were reduced to 328 citations following the initial review. MRI (118 references) and radiography (129 refs) remain the primary imaging modalities in OA studies, with fewer reports using computed tomography (CT) (35 refs) and ultrasound (23 refs). MRI parametric mapping techniques remain an active research area (33 refs) with growth in T2*- and T1-rho mapping publications compared to prior years. Although the knee is the major joint studied (210 refs) there is interest in the hip (106 refs) and hand (29 refs). Imaging continues to focus on evaluation of cartilage (173 refs) and bone (119 refs). CONCLUSION Imaging plays a major role in OA research with publications continuing along traditional lines of investigation. Translational and clinical research application of compositional MRI techniques is becoming more common driven in part by the availability of T2 mapping data from the Osteoarthritis Initiative (OAI). New imaging techniques continue to be developed with a goal of identifying methods with greater specificity and responsiveness to changes in the joint, and novel functional neuroimaging techniques to study central pain. Publications related to imaging of OA continue to be heavily focused on quantitative and semiquantitative MRI evaluation of the knee with increasing application of compositional MRI techniques in the hip.
Collapse
Affiliation(s)
- T J Mosher
- Department of Radiology, Penn State Hershey Medical Center, Hershey, PA, USA.
| | | | | | | |
Collapse
|
22
|
Author response. Phys Ther 2013; 93:1278-80. [PMID: 24137774 DOI: 10.2522/ptj.2013.93.9.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Abstract
Osteoarthritis is one of the most frequent, disabling, and costly pathologies of modern society. Among the main aims of osteoarthritis management are pain control and functional ability improvement. The exact cause of osteoarthritis pain remains unclear. In addition to the pathological changes in articular structures, changes in central pain processing or central sensitization appear to be involved in osteoarthritis pain. The latter calls for a broader approach to the management of patients with osteoarthritis. Yet, the scientific literature offers scant information addressing the treatment of central sensitization, specifically in patients with osteoarthritis. Interventions such as cognitive-behavioral therapy and neuroscience education potentially target cognitive-emotional sensitization (and descending facilitation), and centrally acting drugs and exercise therapy can improve endogenous analgesia (descending inhibition) in patients with osteoarthritis. Future studies should assess these new treatment avenues.
Collapse
|