1
|
Olayinka-Adefemi F, Hou S, Marshall AJ. Dual inhibition of phosphoinositide 3-kinases delta and gamma reduces chronic B cell activation and autoantibody production in a mouse model of lupus. Front Immunol 2023; 14:1115244. [PMID: 37234154 PMCID: PMC10206234 DOI: 10.3389/fimmu.2023.1115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Phosphoinositide 3-kinase delta (PI3Kδ) plays key roles in normal B cell activation and is chronically activated in malignant B cells. Targeting of PI3Kδ using FDA-approved drugs Idelalisib or Umbralisib has shown efficacy in treatment of multiple B cell malignancies. Duvelisib, an inhibitor targeting both PI3Kδ and PI3Kγ (PI3Kδγi) has also been used for treatment of several leukemias and lymphomas and was suggested to offer potential additional benefits in supressing T cell and inflammatory responses. Transcriptomics analyses indicated that while most B cell subsets predominantly express PI3Kδ, plasma cells upregulate PI3Kγ. We thus assessed whether PI3Kδγi treatment can impact chronic B cell activation in the context of an autoantibody-mediated disease. Using the TAPP1R218LxTAPP2R211L (TAPP KI) mouse model of lupus-like disease driven by dysregulated PI3K pathway activity, we performed 4 week PI3Kδγi treatments and found significant reduction in CD86+ B cells, germinal center B cells, follicular helper T cells and plasma cells in multiple tissues. This treatment also significantly attenuated the abnormally elevated serum levels of IgG isotypes observed in this model. The profile of autoantibodies generated was markedly altered by PI3Kδγi treatment, with significant reductions in IgM and IgG targeting nuclear antigens, matrix proteins and other autoantigens. Kidney pathology was also impacted, with reduced IgG deposition and glomerulonephritis. These results indicate that dual inhibition of PI3Kδ and PI3Kγ can target autoreactive B cells and may have therapeutic benefits in autoantibody-mediated disease.
Collapse
|
2
|
Wei L, Liu C, Wang J, Zheng X, Peng Q, Ye Q, Qin Z, Li Z, Zhang X, Wu Y, Wen Y, Zhang X, Yan Q, Ma J. Lactoferrin is required for early B cell development in C57BL/6 mice. J Hematol Oncol 2021; 14:58. [PMID: 33827645 PMCID: PMC8028198 DOI: 10.1186/s13045-021-01074-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Abstract
Lactoferrin (Lf) is widely distributed in mammalian milk, various tissues, and their exocrine fluids and has many physiological functions, such as bacteriostasis, antivirus, and immunoregulation. Here, we provide evidence that lactoferrin is required for early stages of B cell development in mice. Lactoferrin-deficient (Lf−/−) C57BL/6 mice showed systematic reduction in total B cells, which was attributed to the arrest of early B cell development from pre-pro-B to pro-B stage. Although the Lf−/− B cell “seeds” generated greater pro-B cells comparing to wild type (WT) littermates, the Lf−/− mice bone marrow had less stromal cells, and lower CXCL12 expression, produced a less favorable “microenvironment” for early B cell development. The underlying mechanism was mediated through ERK and AKT signalings and an abnormality in the transcription factors related to early differentiation of B cells. The Lf−/− mice also displayed abnormal antibody production in T cell-dependent and T cell-independent immunization experiments. In a pristane-induced lupus model, Lf−/− mice had more serious symptoms than WT mice, whereas lactoferrin treatment alleviated these symptoms. This study demonstrates a novel role of lactoferrin in early B cell development, suggesting a potential benefit for using lactoferrin in B cell-related diseases.
Collapse
Affiliation(s)
- Lingyu Wei
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Department of Immunology, Changzhi, Shanxi, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| | - Can Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jia Wang
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Department of Immunology, Changzhi, Shanxi, China
| | - Xiang Zheng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiu Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiurong Ye
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Department of Pathology, People's Hospital of Guanxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Zailong Qin
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Zhengshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaoyue Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Yangge Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Yuqing Wen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Xuemei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China.
| |
Collapse
|
3
|
Liossis SN, Staveri C. What's New in the Treatment of Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:655100. [PMID: 33748165 PMCID: PMC7973110 DOI: 10.3389/fmed.2021.655100] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 01/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune multisystem disease with a variable presentation and manifestations ranging from mild to severe or even life-threatening. There is an ongoing and unmet need for novel, disease-specific, effective and safe treatment modalities. The aim of this review is to summarize data on SLE treatment that have emerged over the last 3 years. We will put emphasis on studies evaluating potential treatments on severe lupus manifestations such as lupus nephritis. Despite the existence of several therapeutic agents in SLE, the disease keeps causing significant morbidity. It is encouraging that a variety of therapeutic options are currently under investigation, although there are occasional trial failures.
Collapse
Affiliation(s)
- Stamatis Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, Patras, Greece.,Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Chrysanthi Staveri
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, Patras, Greece
| |
Collapse
|
4
|
Li B, Tang Y, Ni X, Chen W. Immune Cell Landscape Identification Associates Intrarenal Mononuclear Phagocytes With Onset and Remission of Lupus Nephritis in NZB/W Mice. Front Genet 2020; 11:577040. [PMID: 33304383 PMCID: PMC7693546 DOI: 10.3389/fgene.2020.577040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Objective A challenging issue in the clinical management of lupus nephritis (LN) is the resistance to immunosuppressive therapy. We postulated that perturbed intrarenal immune cell landscape affected LN onset and remission induction, and shedding light on the characteristics of intrarenal immune cell infiltration could cultivate more efficient treatment regimens. Materials and Methods Genome-wide expression profiles of microarray datasets were downloaded from the Gene Expression Omnibus database. The CIBERSORT algorithm was used to analyze the intrarenal immune cell landscape, followed by Pearson correlation analysis and principal component analysis. The differentially expressed genes were identified and subjected to Gene Ontology (GO) enrichment analyses and protein-protein interaction network establishment, being visualized by Cytoscape and further analyzed by CytoHubba to extract hub genes. Hub genes were also validated in the genomic dataset from kidney biopsy-proven LN patients. Results In addition to memory B cells, monocytes and M1 macrophages were identified as two predominantly increased intrarenal immune cell types in LN-prone NZB/W mice upon nephritis onset. Most interestingly, apart from memory B cells, monocytes and M1 macrophages proportions in kidney tissue were significantly lower in early remission mice compared with late remission mice. Furthermore, GO analysis showed that intrarenal mononuclear phagocytes triggered nephritis onset mainly via the initiation of adaptive immune response and inflammatory reaction, but this functional involvement was mitigated upon remission induction. Hub genes related to LN onset in NZB/W mice were validated in the genomic dataset from kidney biopsy-proven LN patients. Conclusion LN characterizes aberrant mononuclear phagocytes abundance and signature upon disease onset, of which the reversal is associated with early remission induction in LN-prone NZB/W mice. Mononuclear phagocytes might be an adjunctive histology marker for monitoring disease onset and stratifying LN patients in terms of response to remission induction therapy.
Collapse
Affiliation(s)
- Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Pongtarakulpanit N, Pisitkun P, Ngamjanyaporn P. Efficacy and safety of rituximab biosimilar in refractory lupus. Lupus Sci Med 2020; 7:7/1/e000442. [PMID: 33139454 PMCID: PMC7607610 DOI: 10.1136/lupus-2020-000442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Aims To characterise patients with refractory SLE receiving rituximab biosimilar (CT-P10) and to explore short-term efficacy and safety associated with rituximab biosimilar use. Methods We retrospectively analysed data from the medical records of patients with refractory SLE who received CT-P10 in Ramathibodi Hospital, Mahidol University, Thailand. Baseline characteristics, disease activity (modified Systemic Lupus Erythematosus Disease Activity Index (SLEDAI)), response to treatment at 6 months after CT-P10 and infection over 6 months were recorded. Results Thirty-two patients with SLE received CT-P10 from April 2018 to June 2019. Of these, 29 (90.6%) were female and the mean±SD age was 36.8±15.2 years. The median (IQR) disease duration was 9.5 (1.3–13.0) years. All patients received glucocorticoid treatment and used 1.7±0.1 immunosuppressive agents at baseline, excluding antimalarial drugs. Baseline Systemic Lupus International Collaborating Clinics Damage Index score was 0.5 (0.0–1.0). Overall response, which was defined as a reduction in the modified SLEDAI score of ≥4, was achieved in 25.0% of patients at 6 months. The modified SLEDAI score reduced from 4 (1.3–8.0) at baseline to 1 (0.0–5.8) at 6 months (p=0.005). Response by active organ involvement was 71.8%. Serious infection occurred in four patients (12.5%), resulting in one death. The median time of onset of infection after CT-P10 infusion was 35.5 (17.0–72.5) days. Conclusion Rituximab biosimilar is associated with improvement in active organ involvement in patients with refractory SLE. Infection occurred early after rituximab biosimilar infusion.
Collapse
Affiliation(s)
- Nantakarn Pongtarakulpanit
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pintip Ngamjanyaporn
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
You X, Zhang R, Shao M, He J, Chen J, Liu J, Zhang X, Liu X, Jia R, Sun X, Li Z. Double Negative B Cell Is Associated With Renal Impairment in Systemic Lupus Erythematosus and Acts as a Marker for Nephritis Remission. Front Med (Lausanne) 2020; 7:85. [PMID: 32318574 PMCID: PMC7155774 DOI: 10.3389/fmed.2020.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: Recent studies on double negative B cells (DN B cells) suggested that they have potential pathogenic roles in systemic lupus erythematosus (SLE). This study aimed to determine the circulating DN B cells in SLE patients and analyzed the clinical significance of this cell subset. Methods: Fifty-seven SLE patients and fifty healthy controls (HCs) were recruited in this study. Among the 57 SLE patients, 25 had lupus nephritis (LN). All patients were followed up for 24 weeks. Peripheral B cell subsets were analyzed by flow cytometry. Results: DN B cells were significantly elevated in the SLE patients, especially in the patients with LN (p < 0.01). DN B showed a positive correlation with 24-h urine protein excretion (24 h-UPE) levels (r = 0.444, p = 0.034) in LN patients, and inversely correlated with evaluated glomerular filtration rate (eGFR) (r = -0.351, p = 0.011). DN B cells had a positive correlation with plasma cells (r = 0.484, p < 0.001) and memory B cells (r = 0.703, p < 0.001). After treatment, decreased DN B cells were associated with LN alleviation (p = 0.002). In the follow-up, the remission rate of LN patients with decreased DN B cells was significantly higher than LN patients with increased DN B cells (83.33 vs. 25.00%, p = 0.030) at week 24. Conclusions: This study suggests that the peripheral DN B cells are positively correlated with the severity of renal damage in LN patients and may potentially be used as a prognostic marker in LN.
Collapse
Affiliation(s)
- Xujie You
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Ruijun Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Miao Shao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Jiali Chen
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Jiajia Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xia Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Rulin Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Yamamoto EA, Nguyen JK, Liu J, Keller E, Campbell N, Zhang CJ, Smith HR, Li X, Jørgensen TN. Low Levels of Vitamin D Promote Memory B Cells in Lupus. Nutrients 2020; 12:E291. [PMID: 31978964 PMCID: PMC7070834 DOI: 10.3390/nu12020291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Vitamin D deficiency is a known risk factor for Systemic Lupus Erythematosus (SLE), yet clinical trials have not demonstrated efficacy and few studies have utilized lupus models to understand the mechanism underlying this relationship. The Act1-/- mouse is a spontaneous model of lupus and Sjögren's syndrome, characterized by increased Th17 cells and peripheral B cell expansion. Vitamin D3 has anti-inflammatory properties, reduces Th17 cells and impairs B cell differentiation/activation. Therefore, we assessed how varying amounts of vitamin D3 affected lupus-like disease in the Act1-/- mouse. Methods: Act1-/- mice were fed either low/restricted (0 IU/kg), normal (2 IU/kg), or high/supplemented (10 IU/kg) vitamin D3 chow for 9 weeks, after which lupus-like features were analyzed. Results: While we found no differences in Th17 cells between vitamin D3 groups, vitamin D3 restriction specifically promoted memory B cell development, accompanied by elevated levels of serum IgM, IgG1, IgG3, and anti-dsDNA IgG. A similar significant negative association between serum vitamin D and memory B cells was confirmed in a cohort of SLE patients. Conclusion: Low levels of vitamin D3 are associated with elevated levels of memory B cells in an animal model of lupus and well-controlled SLE patients.
Collapse
Affiliation(s)
- Erin A. Yamamoto
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jane K. Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Liu
- Lerner Research Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Emma Keller
- Lerner Research Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nicole Campbell
- Lerner Research Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cun-Jin Zhang
- Lerner Research Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Howard R. Smith
- Department of Rheumatologic and Immunologic Disease, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoxia Li
- Lerner Research Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Trine N Jørgensen
- Lerner Research Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Li Y, Yang JY, Xie X, Jie Z, Zhang L, Shi J, Lin D, Gu M, Zhou X, Li HS, Watowich SS, Jain A, Yun Jung S, Qin J, Cheng X, Sun SC. Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res 2019; 29:474-485. [PMID: 31086255 DOI: 10.1038/s41422-019-0174-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 01/21/2023] Open
Abstract
NF-κB, a family of transcription factors regulating diverse biological processes including immune responses, is activated by canonical and noncanonical pathways based on degradation of IκBα and processing of the IκB-like protein p100, respectively. Although p100 responds to noncanonical NF-κB stimuli for processing, it does not undergo degradation, but rather becomes accumulated, along with canonical NF-κB activation. We show here that the stability of p100 is tightly controlled by a deubiquitinase, Otub1. Otub1 deficiency not only promotes signal-induced p100 processing and noncanonical NF-κB activation but also causes steady-state p100 degradation, leading to aberrant NF-κB activation in the canonical pathway. B-cell-conditional deletion of Otub1 results in B-cell hyperplasia, antibody hyper-production, and lupus-like autoimmunity. Otub1-deficient B cells display aberrantly activated phenotypes and overproduce the cytokine IL-6, contributing to autoimmunity induction. Thus, maintenance of p100 stability by Otub1 serves as an unusual mechanism of NF-κB regulation that prevents autoimmunity.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianhong Shi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Daniel Lin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Herrada AA, Escobedo N, Iruretagoyena M, Valenzuela RA, Burgos PI, Cuitino L, Llanos C. Innate Immune Cells' Contribution to Systemic Lupus Erythematosus. Front Immunol 2019; 10:772. [PMID: 31037070 PMCID: PMC6476281 DOI: 10.3389/fimmu.2019.00772] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies against nuclear antigens, immune complex deposition, and tissue damage in the kidneys, skin, heart and lung. Because of the pathogenic role of antinuclear antibodies and autoreactive T cells in SLE, extensive efforts have been made to demonstrate how B cells act as antibody-producing or as antigen-presenting cells that can prime autoreactive T cell activation. With the discovery of new innate immune cells and inflammatory mediators, innate immunity is emerging as a key player in disease pathologies. Recent work over the last decade has highlighted the importance of innate immune cells and molecules in promoting and potentiating SLE. In this review, we discuss recent evidence of the involvement of different innate immune cells and pathways in the pathogenesis of SLE. We also discuss new therapeutics targets directed against innate immune components as potential novel therapies in SLE.
Collapse
Affiliation(s)
- Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Noelia Escobedo
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Mirentxu Iruretagoyena
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Valenzuela
- Laboratorio de Enfermedades Autoinmunes Oculares y Sistémicas, Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paula I Burgos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Cuitino
- Laboratorio de Enfermedades Autoinmunes Oculares y Sistémicas, Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Llanos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Touzani F, Pozdzik A. New insights into immune cells cross-talk during IgG4-related disease. Clin Immunol 2018; 198:1-10. [PMID: 30419354 DOI: 10.1016/j.clim.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/25/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022]
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a newly acknowledged entity, characterized by an immune-mediated fibro-inflammatory process affecting virtually all organs, with infiltration of IgG4+ bearing plasma cells. Until today the pathogenesis of IgG4-RD remains unknown. Treatment with anti-CD20 monoclonal antibodies efficiently induced remission and attenuated the secretory phenotype of myofibroblasts responsible of uncontrolled collagen deposition. This supports the pathogenic role of the adaptive immunity, particularly B cell compartment and B cell/T cell interaction. Latest studies have also highlighted the importance of innate immune system that has been underestimated before and the key role of a specific T cell subset, T follicular helper cells that are involved in IgG4-class-switching and plasmablast differentiation. In this review, we aim to review the most recent knowledge of innate immunity, T and B cells involvement in IgG4-RD, and introduce tertiary lymphoid organs (TLO) as a potential marker of relapse in this condition.
Collapse
Affiliation(s)
- Fahd Touzani
- Internal medicine department, Hospital Brugmann, Brussels, Belgium; Nephrology and dialysis clinic, Hospital Brugmann, Brussels, Belgium.
| | - Agnieszka Pozdzik
- Nephrology and dialysis clinic, Hospital Brugmann, Brussels, Belgium; Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Sakkas LI, Daoussis D, Mavropoulos A, Liossis SN, Bogdanos DP. Regulatory B cells: New players in inflammatory and autoimmune rheumatic diseases. Semin Arthritis Rheum 2018; 48:1133-1141. [PMID: 30409417 DOI: 10.1016/j.semarthrit.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulatory B cells (Bregs) are a new subset of B cells with immunoregulatory functions, mainly through IL-10 production. Bregs suppress inflammatory Th1 and Th17 differentiation and induce Tregs suppressing autoimmune diseases. The aim of the study was to review the literature related to Bregs in autoimmune rheumatic diseases (ARDs). METHODS A literature review of publications in PUBMED published in English was performed using the relevant combinations of terms. RESULTS All relevant publications are discussed. Overall, recent studies in rheumatic diseases found Bregs to be decreased in ANCA-associated vasculitides (AAV) and in systemic sclerosis (SSc), particularly in SSc-associated lung fibrosis. In AAV Bregs levels are negatively correlated with autoantibody levels whereas in SSc this association is less clear but there is an inverse association with Th1 and Th17 cells. In rheumatoid arthritis (RA), Bregs were decreased, particularly in RA-associated lung fibrosis. In psoriatic arthritis IL-10 + Bregs are decreased and inversely associated with Th1 and Th17 cells. In systemic lupus erythematosus (SLE), the role of Bregs is unclear. In experimental diseases, when Bregs were expanded ex-vivo, they ameliorated established disease. CONCLUSION Bregs appear to be a new player in the pathogenesis of ARDs, and may offer a new strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece.
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| |
Collapse
|
12
|
Hruskova Z, Tesar V. Lessons learned from the failure of several recent trials with biologic treatment in systemic lupus erythematosus. Expert Opin Biol Ther 2018; 18:989-996. [PMID: 30040494 DOI: 10.1080/14712598.2018.1504918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Treatment of systemic lupus erythematosus (SLE) represents a challenge due to variable disease manifestations, clinical course, and outcome. Long-term outcome in SLE remain unsatisfactory and a search for new therapeutic options is definitely warranted. Despite expectations, most clinical trials performed in SLE and lupus nephritis in the last decade did not reach primary outcome, and the only drug that has been licensed is belimumab. AREAS COVERED Results of negative trials testing monoclonal antibodies and other biologic agents in SLE are briefly summarized. Reasons for the failure of the trials are listed and discussed. EXPERT OPINION Future studies should recruit patients with similar organ involvement, better defined disease manifestations, higher activity, and similar severity. In addition to testing higher efficacy if given as add-on treatment to standard-of-care, the trials should be aimed at reducing dosing, or completely eliminating some parts of the current standard treatment, especially corticosteroids. Median follow-up of the patients should be longer. Moreover, specific biomarkers are needed to help to identify eligible patients and to better define response to treatment. An urgent unmet need is testing these new drugs in patients with severe SLE (including those refractory to current treatment).
Collapse
Affiliation(s)
- Zdenka Hruskova
- a Department of Nephrology, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Vladimir Tesar
- a Department of Nephrology, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
13
|
Mesnyankina AA, Solovyev SK, Aseeva EA, Nasonov EL. THE EFFICIENCY OF BIOLOGICAL THERAPY AND THE FEATURES OF HUMORAL IMMUNITY IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS. ACTA ACUST UNITED AC 2018. [DOI: 10.14412/1995-4484-2018-302-309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective: to investigate the effect of various biological agents (BAs), including combined treatment with rituximab (RTM) and belimumab (BLM), on the activity of systemic lupus erythematosus (SLE) and to evaluate their efficacy and impact on some parameters of humoral immunity.Subjects and methods. BAs were prescribed to 54 patients with a reliable diagnosis of SLE with high and medium activity according to SLEDAI-2K; 40 of them received RTM, 7 – BLM; 7 – combined therapy with RTM and BLM. Clinical and laboratory examinations were made in all the patients at the time of their inclusion and then every 3 months during a year. The results were assessed using SLEDAI-2K, BILAG index, Lupus Erythematosus National Assessment (SELENA)-SLEDAI Flare index (SFI) (a moderate, severe exacerbation), and SLE Responder Index (SRI).Results and discussion. At 3, 6, and 12 months after start of therapy, the use of BAs in all the patients resulted in a disease activity reduction. It was statistically significant (p < 0.00001) in the RTM group; and no statistical analysis was carried out in the BLM and RTM+BLM groups due to the small numbers of patients. At the same time, there was a progressive decrease in the levels of anti-double-stranded DNA (ds-DNA) antibodies (Abs) and an increase in the concentration of the complement fractions C3 and C4 in the RTM and RTM+BLM groups (p < 0.05) at one-year follow-up. After 12 months of therapy with BAs, there was a decrease in IgG (p < 0.02) and IgM (p < 0.03) levels; but overall it remained within the reference ranges. Prior to therapy, irreversible organ damages were recorded in 23 (42.6%) of the 54 patients. The increased damage index at 12 month was observed only in patients receiving RTM, which is probably due to the use of higher-dose glucocorticoids.Conclusion. All three methods of therapy with BAs in SLE patients demonstrated good efficiency shown as a significant decrease in clinical and laboratory activity measures that were assessed by SLEDAI-2K and the levels of anti-ds-DNA and complement components C3 and C4. The decrease in immunoglobulin levels did not go beyond the reference values. Therapy with BLM and RTM+BLM allowed for managing patients with the low and average doses of oral glucocorticoids, which contributed to the reduction of not only the activity, but also risk of irreversible organ damages.
Collapse
|