1
|
Qamar H, Bibi S, Qadeer Z, Muzammil F, Batool M, Aslam S, Akram A, Arshad A, Irfan M. Association of ESR1 Xba1 (rs9340799) With Male Infertility: A Systematic Review and Meta-Analysis. Am J Mens Health 2025; 19:15579883251319134. [PMID: 39989275 DOI: 10.1177/15579883251319134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Variations in the estrogen receptor genes, particularly the Xba1 (rs9340799) SNP in the ESR1 gene, may influence the effects of estrogen on male fertility. Results from previous studies on this SNP for male infertility have been inconclusive. This review aimed to determine the association of ESR1 Xba1 (rs9340799) with male infertility. Relevant case-control studies published in English were searched from Google Scholar, Embase, Scopus, Web of Science, Cochrane Library, and PubMed using keywords of ESR, polymorphism, and male infertility. Studies on animals, reviews, and abstracts were excluded. Pooled odds ratios (ORs) were calculated for four genetic models, with heterogeneity assessed by I2. A fixed or random effect model was applied based on I2, and trial sequential analysis (TSA) was conducted with 5% significance for type I error and 95% power. ESR1 expression levels were examined in testes, hypothalamus, prostate, and pituitary using GTEx Analysis. Nine studies (four Asian, four Caucasian, one African) met the criteria. The G allele was protective against infertility overall (OR: 0.80; 95% confidence interval [CI] = [0.70, 0.92]) and in Caucasian men (OR: 0.71; 95% CI = [0.54, 0.92]). Lower infertility risk was observed in Asian (AA vs. GG OR: 0.65; 95% CI = [0.43, 0.98]) and Caucasian men (OR: 0.49; 95% CI = [0.28, 0.83]). TSA indicated no further studies are likely to change these results. No significant change in expression of ESR1 was observed due to this SNP. The present meta-analysis suggests that the SNP Xba1 (rs9340799) in ESR1 is protective against male infertility, with current data sufficient to confirm these findings.
Collapse
Affiliation(s)
- Hania Qamar
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Sadia Bibi
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Zeeshan Qadeer
- Department of Urology, Rawalpindi Medical University & Allied Hospitals, Rawalpindi, Pakistan
| | - Faiza Muzammil
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Masooma Batool
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ayesha Akram
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Adina Arshad
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Irfan
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Zheng H, Gong C, Li J, Hou J, Gong X, Zhu X, Deng H, Wu H, Zhang F, Shi Q, Zhou J, Shi B, Yang X, Xi Y. CCDC157 is essential for sperm differentiation and shows oligoasthenoteratozoospermia-related mutations in men. J Cell Mol Med 2024; 28:e18215. [PMID: 38509755 PMCID: PMC10955179 DOI: 10.1111/jcmm.18215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Oligoasthenoteratospermia (OAT), characterized by abnormally low sperm count, poor sperm motility, and abnormally high number of deformed spermatozoa, is an important cause of male infertility. Its genetic basis in many affected individuals remains unknown. Here, we found that CCDC157 variants are associated with OAT. In two cohorts, a 21-bp (g.30768132_30768152del21) and/or 24-bp (g.30772543_30772566del24) deletion of CCDC157 were identified in five sporadic OAT patients, and 2 cases within one pedigree. In a mouse model, loss of Ccdc157 led to male sterility with OAT-like phenotypes. Electron microscopy revealed misstructured acrosome and abnormal head-tail coupling apparatus in the sperm of Ccdc157-null mice. Comparative transcriptome analysis showed that the Ccdc157 mutation alters the expressions of genes involved in cell migration/motility and Golgi components. Abnormal Golgi apparatus and decreased expressions of genes involved in acrosome formation and lipid metabolism were detected in Ccdc157-deprived mouse germ cells. Interestingly, we attempted to treat infertile patients and Ccdc157 mutant mice with a Chinese medicine, Huangjin Zanyu, which improved the fertility in one patient and most mice that carried the heterozygous mutation in CCDC157. Healthy offspring were produced. Our study reveals CCDC157 is essential for sperm maturation and may serve as a marker for diagnosis of OAT.
Collapse
Affiliation(s)
- Huimei Zheng
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenjia Gong
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, USTC‐SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and DevelopmentUniversity of Science and Technology of ChinaHefeiChina
| | - Jingping Li
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaru Hou
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Xinhan Gong
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Xinhai Zhu
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Huan Deng
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Haoyue Wu
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Fengbin Zhang
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
| | - Qinghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, USTC‐SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and DevelopmentUniversity of Science and Technology of ChinaHefeiChina
| | - Jianteng Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, USTC‐SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and DevelopmentUniversity of Science and Technology of ChinaHefeiChina
| | - Baolu Shi
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, USTC‐SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and DevelopmentUniversity of Science and Technology of ChinaHefeiChina
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| |
Collapse
|
3
|
Mukherjee AG, Gopalakrishnan AV. Unlocking the mystery associated with infertility and prostate cancer: an update. Med Oncol 2023; 40:160. [PMID: 37099242 DOI: 10.1007/s12032-023-02028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Male-specific reproductive disorders and cancers have increased intensely in recent years, making them a significant public health problem. Prostate cancer (PC) is the most often diagnosed cancer in men and is one of the leading causes of cancer-related mortality. Both genetic and epigenetic modifications contribute to the development and progression of PC, even though the exact underlying processes causing this disease have yet to be identified. Male infertility is also a complex and poorly understood phenomenon believed to afflict a significant portion of the male population. Chromosomal abnormalities, compromised DNA repair systems, and Y chromosome alterations are just a few of the proposed explanations. It is becoming widely accepted that infertility shares a link with PC. Much of the link between infertility and PC is probably attributable to common genetic defects. This article provides an overview of PC and spermatogenic abnormalities. This study also investigates the link between male infertility and PC and uncovers the underlying reasons, risk factors, and biological mechanisms contributing to this association.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Romeo M, Spaggiari G, Nuzzo F, Granata ARM, Simoni M, Santi D. Follicle-stimulating hormone effectiveness in male idiopathic infertility: What happens in daily practice? Andrology 2023; 11:478-488. [PMID: 36424882 DOI: 10.1111/andr.13353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To assess the effectiveness of follicle-stimulating hormone (FSH) administration in male idiopathic infertility in a clinical setting. METHODS A retrospective real-world study was carried out, including all consecutive FSH-treated infertile men attending the Andrology Unit of Modena (Italy) from June 2015 to May 2022. Medical history, physical and andrological examinations, hormonal and seminal parameters, therapeutic management and pregnancy data were collected. The primary endpoint was the number of pregnancies obtained after FSH administration, whereas semen parameters change was the secondary outcome. RESULTS A total of 194 of 362 (53.6%) infertile men, eligible according to the Italian Health System regulations, were treated with FSH (mean age 37.9 ± 6.1 years). Following FSH administration (mean therapy duration 9.1 ± 7.1 months), 43 pregnancies were recorded (27.6%), of which 22 occurred naturally and 21 after assisted reproduction. A significant increase in sperm concentration (9.9 ± 12.2 vs. 18.9 ± 38.9 million/mL, p = 0.045) was detected after treatment, together with a significant increase in normozoospermia (from 1.0% to 5.1%, p = .044) and a reduction in azoospermia rate (from 9.8% to 7%, p = 0.044). Dividing the cohort in FSH-responders and non-responders, in terms of pregnancy achieved, higher sperm concentrations (15.7 ± 26.6 vs. 22.2 ± 25.7 million/mL, p = 0.033) and progressive sperm motility (18.0 ± 18.2 vs. 27.3 ± 11.3, p = 0.044) were found in pregnancy group. CONCLUSION Our experience suggests that FSH, empirically administered to men with idiopathic infertility, leads to pregnancy in one out of four patients and increases sperm concentration. Although the expected limits because of a real-world data study, the number of FSH-treated patients required to achieve one pregnancy seems to be lower in clinical setting if compared to previously published data.
Collapse
Affiliation(s)
- Marilina Romeo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy.,Unit of Andrology and Sexual Medicine of the Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy
| | - Federico Nuzzo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio R M Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy.,Unit of Andrology and Sexual Medicine of the Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy.,Unit of Andrology and Sexual Medicine of the Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy.,Unit of Andrology and Sexual Medicine of the Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - Universitaria of Modena, Modena, Italy
| |
Collapse
|
5
|
Sudhakar DVS, Phanindranath R, Jaishankar S, Ramani A, Kalamkar KP, Kumar U, Pawar AD, Dada R, Singh R, Gupta NJ, Deenadayal M, Tolani AD, Sharma Y, Anand A, Gopalakrishnan J, Thangaraj K. Exome sequencing and functional analyses revealed CETN1 variants leads to impaired cell division and male fertility. Hum Mol Genet 2023; 32:533-542. [PMID: 36048845 DOI: 10.1093/hmg/ddac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023] Open
Abstract
Human spermatogenesis requires an orchestrated expression of numerous genes in various germ cell subtypes. Therefore, the genetic landscape of male infertility is highly complex. Known genetic factors alone account for at least 15% of male infertility. However, ~40% of infertile men remain undiagnosed and are classified as idiopathic infertile men. We performed exome sequencing in 47 idiopathic infertile men (discovery cohort), followed by replication study (40 variants in 33 genes) in 844 infertile men and 709 controls using Sequenom MassARRAY® based genotyping. We report 17 variants in twelve genes that comprise both previously reported (DNAH8, DNAH17, FISP2 and SPEF2) and novel candidate genes (BRDT, CETN1, CATSPERD, GMCL1, SPATA6, TSSK4, TSKS and ZNF318) for male infertility. The latter have a strong biological nexus to human spermatogenesis and their respective mouse knockouts are concordant with human phenotypes. One candidate gene CETN1, identified in this study, was sequenced in another independent cohort of 840 infertile and 689 fertile men. Further, CETN1 variants were functionally characterized using biophysical and cell biology approaches. We demonstrate that CETN1 variant- p.Met72Thr leads to multipolar cells, fragmented nuclei during mitosis leading to cell death and show significantly perturbed ciliary disassembly dynamics. Whereas CETN1-5' UTR variant; rs367716858 leads to loss of a methylation site and increased reporter gene expression in vitro. We report a total of eight novel candidate genes identified by exome sequencing, which may have diagnostic relevance and can contribute to improved diagnostic workup and clinical management of male infertility.
Collapse
Affiliation(s)
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Shveta Jaishankar
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Anand Ramani
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Kaustubh P Kalamkar
- Institute for Neurophysiology, University of Cologne, Cologne D-50931, Germany
| | - Umesh Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Rima Dada
- All India Institute of Medical Sciences, New Delhi, India
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India.,Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, India
| | - Anuranjan Anand
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India.,Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
6
|
Santi D, Spaggiari G, Granata ARM, Simoni M. Real-world evidence analysis of the follicle-stimulating hormone use in male idiopathic infertility. Best Pract Res Clin Obstet Gynaecol 2022; 85:121-133. [PMID: 35618626 DOI: 10.1016/j.bpobgyn.2022.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Male idiopathic infertility remains a therapeutic challenge in the couple infertility management. In this setting, an empirical treatment with follicle-stimulating hormone (FSH) is allowed, although not recommended. Twenty-one clinical trials and four meta-analyses highlighted an overall increased pregnancy rate in case of FSH administration, but the indiscriminate FSH prescription is still unsupported by clinical evidence in idiopathic infertility. This context could represent an example in which real-world data (RWD) could add useful information. From a nationwide clinical practice survey performed in Italy, emerged the clinicians' attitude to prescribe FSH in the case of impaired semen with a significant improvement of semen parameters, identifying FSH treatment as a therapeutic card in the real-life management. Although more robust data are still needed to optimize FSH treatment in male idiopathic infertility, RWD should be included in the body of evidence considered in healthcare decision-making.
Collapse
Affiliation(s)
- Daniele Santi
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Via Giardini 1355, 41126 Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Via Giardini 1355, 41126 Modena, Italy
| | - Antonio R M Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Via Giardini 1355, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Via Giardini 1355, 41126 Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| |
Collapse
|
7
|
Malik J, Choudhary S, Mandal SC, Sarup P, Pahuja S. Oxidative Stress and Male Infertility: Role of Herbal Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:137-159. [PMID: 36472821 DOI: 10.1007/978-3-031-12966-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a universal health problem affecting 15% of couples, out of which 20-30% cases are due to male infertility. The leading causes of male infertility include hormonal defects, physical reasons, sexual problems, hazardous environment, stressful lifestyle, genetic factors, epigenetic factors, and oxidative stress. Various physiological functions involve reactive oxygen species (ROS) and nitrogen species at appropriate levels for proper smooth functioning. ROS control critical reproductive processes such as capacitation, acrosomal reaction, hyperactivation, egg penetration, and sperm head decondensation. The excessive free radicals or imbalance between ROS and endogenous antioxidant enzymes damages sperm membrane by inducing lipid peroxidation causing mitochondrial dysfunction and DNA damage that eventually lead to male infertility. Numerous synthetic products are available in the market to treat infertility problems, largely ending in side effects and repressing symptoms. Ayurveda contains a particular group of Rasayana herbs, called vajikarana, that deals with nourishment and stimulation of sexual tissues, improves male reproductive vitality, and deals with oxidative stress via antioxidant mechanism. The present study aims to describe oxidative stress and the role of herbal drugs in treating male infertility.
Collapse
Affiliation(s)
- Jai Malik
- University Institute of Pharmaceutical Sciences - UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | - Sunayna Choudhary
- University Institute of Pharmaceutical Sciences - UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Faculty of Engineering & Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Prerna Sarup
- Swami Vivekanand College of Pharmacy, Patiala, Punjab, India
| | - Sonia Pahuja
- Swami Vivekanand College of Pharmacy, Patiala, Punjab, India
| |
Collapse
|
8
|
Sudhakar DVS, Shah R, Gajbhiye RK. Genetics of Male Infertility - Present and Future: A Narrative Review. J Hum Reprod Sci 2021; 14:217-227. [PMID: 34759610 PMCID: PMC8527069 DOI: 10.4103/jhrs.jhrs_115_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility affects 8%–12% of couples worldwide with a male factor contributing to nearly 50% of couples either as a primary or contributing cause. Several genetic factors that include single-gene and multiple-gene defects associated with male infertility were reported in the past two decades. However, the etiology remains ambiguous in a majority of infertile men (~40%). The objective of this narrative review is to provide an update on the genetic factors associated with idiopathic male infertility and male reproductive system abnormalities identified in the last two decades. We performed a thorough literature search in online databases from January 2000 to July 2021. We observed a total of 13 genes associated with nonobstructive azoospermia due to maturation/meiotic arrest. Several studies that reported novel genes associated with multiple morphological abnormalities of the sperm flagella are also discussed in this review. ADGRG2, PANK2, SCNN1B, and CA12 genes are observed in non-CFTR-related vas aplasia. The genomic analysis should be quickly implemented in clinical practice as the detection of gene abnormalities in different male infertility phenotypes will facilitate genetic counseling.
Collapse
Affiliation(s)
- Digumarthi V S Sudhakar
- Department of Gamete Immunobiology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Rupin Shah
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Rahul K Gajbhiye
- Clinical Research Lab and Andrology Clinic, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Mokos M, Planinić A, Bilić K, Katušić Bojanac A, Sinčić N, Bulić Jakuš F, Ježek D. Stereological properties of seminiferous tubules in infertile men with chromosomal and genetic abnormalities. Minerva Endocrinol (Torino) 2021; 47:11-22. [PMID: 34328293 DOI: 10.23736/s2724-6507.21.03589-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND Male infertility is caused by genetic anomalies in 15%-30% of cases. This study aimed to determine stereological properties of seminiferous tubules in infertile men with genetic anomalies, including Klinefelter syndrome (KS), Y chromosome microdeletions (MYC) and CFTR gene mutations (CFTR), and to compare them to seminiferous tubules of men with obstructive azoospermia of non-genetic origin (control group). METHODS The study was conducted on 28 human testis biopsy specimens obtained from 14 patients with MYC, 18 samples from 9 patients with KS, and 6 samples from 3 patients with CFTR. Whenever possible, a bilateral biopsy was included in the study. The control group had 33 samples from 18 patients (3 of them with a solitary testis). Qualitative and quantitative (stereological) analysis of seminiferous tubules (including the status of spermatogenesis, volume, surface area, length and number of tubules) were performed in all groups. RESULTS Qualitative histological analysis revealed significant impairment of spermatogenesis in KS and MYC, whereas testicular parenchyma was fully maintained in CFTR and control groups. Spermatogenesis was most seriously impaired in KS. All stereological parameters were significantly lower in KS and MYC, compared to the CFTR and control groups. The total volume, surface and length of seminiferous tubules were significantly lower in KS compared with MYC. CONCLUSIONS Stereological analysis is valuable in evaluating male infertility, whereas qualitative histological analysis can be helpful in assessing sperm presence in testicular tissue of patients with KS or MYK undergoing TESE.
Collapse
Affiliation(s)
- Mislav Mokos
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Planinić
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Bilić
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Katušić Bojanac
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sinčić
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Florijana Bulić Jakuš
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Ježek
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia - .,Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
11
|
SPATS1 (spermatogenesis-associated, serine-rich 1) is not essential for spermatogenesis and fertility in mouse. PLoS One 2021; 16:e0251028. [PMID: 33945571 PMCID: PMC8096103 DOI: 10.1371/journal.pone.0251028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
SPATS1 (spermatogenesis-associated, serine-rich 1) is an evolutionarily conserved, testis-specific protein that is differentially expressed during rat male meiotic prophase. Some reports have suggested a link between SPATS1 underexpression/mutation and human pathologies such as male infertility and testicular cancer. Given the absence of functional studies, we generated a Spats1 loss-of-function mouse model using CRISPR/Cas9 technology. The phenotypic analysis showed no overt phenotype in Spats1-/- mice, with both males and females being fertile. Flow cytometry and histological analyses did not show differences in the testicular content and histology between WT and knockout mice. Moreover, no significant differences in sperm concentration, motility, and morphology, were observed between WT and KO mice. These results were obtained both for young adults and for aged animals. Besides, although an involvement of SPATS1 in the Wnt signaling pathway has been suggested, we did not detect changes in the expression levels of typical Wnt pathway-target genes in mutant individuals. Thus, albeit Spats1 alteration might be a risk factor for male testicular health, we hereby show that this gene is not individually essential for male fertility and spermatogenesis in mouse.
Collapse
|
12
|
Zhang X, Xia Z, Lv X, Li D, Liu M, Zhang R, Ji T, Liu P, Ren R. DDB1- and CUL4-associated factor 8 plays a critical role in spermatogenesis. Front Med 2021; 15:302-312. [PMID: 33855678 DOI: 10.1007/s11684-021-0851-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/20/2021] [Indexed: 11/26/2022]
Abstract
Cullin-RING E3 ubiquitin ligase (CRL)-4 is a member of the large CRL family in eukaryotes. It plays important roles in a wide range of cellular processes, organismal development, and physiological and pathological conditions. DDB1- and CUL4-associated factor 8 (DCAF8) is a WD40 repeat-containing protein, which serves as a substrate receptor for CRL4. The physiological role of DCAF8 is unknown. In this study, we constructed Dcaf8 knockout mice. Homozygous mice were viable with no noticeable abnormalities. However, the fertility of Dcaf8-deficient male mice was markedly impaired, consistent with the high expression of DCAF8 in adult mouse testis. Sperm movement characteristics, including progressive motility, path velocity, progressive velocity, and track speed, were significantly lower in Dcaf8 knockout mice than in wild-type (WT) mice. However, the total motility was similar between WT and Dcaf8 knockout sperm. More than 40% of spermatids in Dcaf8 knockout mice showed pronounced morphological abnormalities with typical bent head malformation. The acrosome and nucleus of Dcaf8 knockout sperm looked similar to those of WT sperm. In vitro tests showed that the fertilization rate of Dcaf8 knockout mice was significantly reduced. The results demonstrated that DCAF8 plays a critical role in spermatogenesis, and DCAF8 is a key component of CRL4 function in the reproductive system.
Collapse
Affiliation(s)
- Xiuli Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhizhou Xia
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xingyu Lv
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingzhu Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
13
|
Lower total motile count is associated with smaller historic intergenerational family size: a pedigree analysis from the Utah Population Database. J Assist Reprod Genet 2021; 38:1207-1213. [PMID: 33629176 DOI: 10.1007/s10815-021-02115-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To describe the association between contemporary total motile count (TMC), a measure of male factor infertility, and historic intergenerational family size. METHODS This is a retrospective, population-based, cohort study of men who underwent semen analysis for infertility workup at University of Utah, with at least a single measure of TMC, who were linked to extensive genealogical data. Two thousand one hundred eighty-two pedigree branches of men with a measure of TMC within the UPDB were identified. We identified the average number of generations and offspring within each generation. Conditional logistic regression models were used to assess the association between the risk of having a TMC in the 5th or 25th percentile and intergenerational family size. Generalized estimating equations (GEE) were used to assess the association between interval-level TMC and the number of ancestral offspring. RESULTS We found no association between intergenerational size and TMC within the 5th percentile (TMC < 4 million; RR = 0.97, 95% CI 0.93-1.01) or the 25th percentile (TMC < 62 million; RR = 1.00, 95% CI 0.97-1.03). When TMC was analyzed as a continuous variable, we found that lower TMC is associated with smaller intergenerational family size. For every additional child in their ancestral pedigree, we observed an increase in TMC of 1.88 million (p = 0.03). Men in the top quartile for intergenerational family size had a TMC that was 48 million higher than men in the bottom quartile (p = 0.047). CONCLUSIONS We found an association between TMC and ancestral family size, suggesting that lower TMC is associated with smaller intergenerational family size.
Collapse
|
14
|
Cannarella R, Condorelli RA, Paolacci S, Barbagallo F, Guerri G, Bertelli M, La Vignera S, Calogero AE. Next-generation sequencing: toward an increase in the diagnostic yield in patients with apparently idiopathic spermatogenic failure. Asian J Androl 2021; 23:24-29. [PMID: 32655042 PMCID: PMC7831827 DOI: 10.4103/aja.aja_25_20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A large proportion of patients with idiopathic spermatogenic failure (SPGF; oligozoospermia or nonobstructive azoospermia [NOA]) do not receive a diagnosis despite an extensive diagnostic workup. Recent evidence has shown that the etiology remains undefined in up to 75% of these patients. A number of genes involved in germ-cell proliferation, spermatocyte meiotic divisions, and spermatid development have been called into play in the pathogenesis of idiopathic oligozoospermia or NOA. However, this evidence mainly comes from case reports. Therefore, this study was undertaken to identify the molecular causes of SPGF. To accomplish this, 15 genes (USP9Y, NR5A1, KLHL10, ZMYND15, PLK4, TEX15, TEX11, MEIOB, SOHLH1, HSF2, SYCP3, TAF4B, NANOS1, SYCE1, and RHOXF2) involved in idiopathic SPGF were simultaneously analyzed in a cohort of 25 patients with idiopathic oligozoospermia or NOA, accurately selected after a thorough diagnostic workup. After next-generation sequencing (NGS) analysis, we identified the presence of rare variants in the NR5A1 and TEX11 genes with a pathogenic role in 3/25 (12.0%) patients. Seventeen other different variants were identified, and among them, 13 have never been reported before. Eleven out of 17 variants were likely pathogenic and deserve functional or segregation studies. The genes most frequently mutated were MEIOB, followed by USP9Y, KLHL10, NR5A1, and SOHLH1. No alterations were found in the SYCP3, TAF4B, NANOS1, SYCE1, or RHOXF2 genes. In conclusion, NGS technology, by screening a specific custom-made panel of genes, could help increase the diagnostic rate in patients with idiopathic oligozoospermia or NOA.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | | | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | | | | | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
15
|
Neto FTL, Flannigan R, Goldstein M. Regulation of Human Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:255-286. [PMID: 34453741 DOI: 10.1007/978-3-030-77779-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human spermatogenesis (HS) is an intricate network of sequential processes responsible for the production of the male gamete, the spermatozoon. These processes take place in the seminiferous tubules (ST) of the testis, which are small tubular structures considered the functional units of the testes. Each human testicle contains approximately 600-1200 STs [1], and are capable of producing up to 275 million spermatozoa per day [2].
Collapse
Affiliation(s)
| | - Ryan Flannigan
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.,University of British Columbia, Vancouver, BC, Canada
| | - Marc Goldstein
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Metin Mahmutoglu A, Gunes S, Asci R, Henkel R, Aydin O. Association of XRCC1 and ERCC2 promoters' methylation with chromatin condensation and sperm DNA fragmentation in idiopathic oligoasthenoteratozoospermic men. Andrologia 2020; 53:e13925. [PMID: 33355950 DOI: 10.1111/and.13925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to investigate whether the promoter methylation of XRCC1 and ERCC2 genes is associated with sperm DNA fragmentation and chromatin condensation in idiopathic oligoasthenoteratozoospermic men. This study involved 77 infertile men with idiopathic oligoasthenoteratozoospermia and 51 normozoospermic controls. The methylight method, TUNEL assay and aniline blue staining were used for the evaluation of XRCC1 and ERCC2 genes' methylation, SDF and sperm chromatin condensation, respectively. SDF (p = .004) and XRCC1 methylation (p = .0056) were found to be significantly higher in men with idiopathic OAT than in the controls, while mature spermatozoa frequency was higher in controls as compared to infertile men (p < .0001). No significant association was found between SDF and methylation of XRCC1 and ERCC2 genes (p = .9277 and p = .8257, respectively). However, compared to the cut-off point obtained by receiver operating characteristic analysis, a significant association was found between SDF and XRCC1 methylation, positive and negative methylation groups, generated according to the cut-off value for XRCC1. XRCC1 methylation was found to have a significant effect on chromatin condensation (p = .0017). No significant difference was detected among ERCC2 methylation, male infertility and SDF. In conclusion, XRCC1 methylation may have a role in sperm chromatin condensation and idiopathic OAT.
Collapse
Affiliation(s)
- Asli Metin Mahmutoglu
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine, Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Oguz Aydin
- Faculty of Medicine, Department of Pathology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
17
|
Cocchi V, Gasperini S, Hrelia P, Tirri M, Marti M, Lenzi M. Novel Psychoactive Phenethylamines: Impact on Genetic Material. Int J Mol Sci 2020; 21:ijms21249616. [PMID: 33348640 PMCID: PMC7766159 DOI: 10.3390/ijms21249616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Psychedelic and stimulating phenethylamines belong to the family of new psychoactive substances (NPS). The acute toxicity framework has begun to be investigated, while studies showing genotoxic potential are very limited or not available. Therefore, in order to fill this gap, the aim of the present work was to evaluate the genotoxicity by treating TK6 cells with 2C-H, 2C-I, 2C-B, 25B-NBOMe, and the popular 3,4-Methylenedioxymethylamphetamine (MDMA). On the basis of cytotoxicity and cytostasis results, we selected the concentrations (6.25–35 µM) to be used in genotoxicity analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by an automated flow cytometric protocol. All substances, except MDMA, resulted genotoxic; therefore, we evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the demonstrated genotoxicity. The obtained results showed a statistically significant increase in ROS levels for all genotoxic phenethylamines confirming this hypothesis. Our results highlight the importance of genotoxicity evaluation for a complete assessment of the risk associated also with NPS exposure. Indeed, the subjects who do not have hazardous behaviors or require hospitalization by using active but still “safe” doses could run into genotoxicity and in the well-known long-term effects associated.
Collapse
Affiliation(s)
- Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
- Correspondence:
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| |
Collapse
|
18
|
Hu TY, Zhang H, Meng LL, Yuan SM, Tu CF, Du J, Lu GX, Lin G, Nie HC, Tan YQ. Novel homozygous truncating variants in ZMYND15 causing severe oligozoospermia and their implications for male infertility. Hum Mutat 2020; 42:31-36. [PMID: 33169450 DOI: 10.1002/humu.24138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Sequence variants of ZMYND15 cause azoospermia in humans, but they have not yet been reported in infertile men with severe oligozoospermia (SO). We performed whole-exome and Sanger sequencing to identify suspected causative variants in 414 idiopathic participating infertile men with SO or azoospermia. Three novel homozygous truncating variants in ZMYND15 were identified in three of the 219 (1.37%) unrelated patients with SO, including c.1209T>A(p.Tyr403*), c.1650delC (p.Glu551Lysfs*75), and c.1622_1636delinsCCAC (p.Leu541Profs*39). In silico bioinformatic analyses as well as in vivo and in vitro experiments showed that the ZMYND15 variants carried by the affected subjects might be the underlying cause for their infertility. One patient accepted intracytoplasmic sperm injection therapy, using his ejaculated sperm, and his wife successfully became pregnant. Our findings expand the disease phenotype spectrum by indicating that ZMYND15 variants cause SO and male infertility and suggest a possible correlation between the severity of male infertility caused by ZMYND15 variants and male age.
Collapse
Affiliation(s)
- Tong-Yao Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Huan Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| | - Lan-Lan Meng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| | - Shi-Min Yuan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| | - Chao-Feng Tu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| | - Hong-Chuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics In Hunan Province, Changsha, China
| |
Collapse
|
19
|
Clinical Evaluation of a Custom Gene Panel as a Tool for Precision Male Infertility Diagnosis by Next-Generation Sequencing. Life (Basel) 2020; 10:life10100242. [PMID: 33076341 PMCID: PMC7602585 DOI: 10.3390/life10100242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Up to 15% of couples are infertile and male factor infertility accounts for approximately 50% of these cases. Male infertility is a multifactorial pathological condition. The genetic of male infertility is very complex and at least 2000 genes are involved in its etiology. Genetic testing by next-generation sequencing (NGS) technologies can be relevant for its diagnostic value in male infertile patients. Therefore, the aim of this study was to implement the diagnostic offer with the use of an NGS panel for the identification of genetic variants. METHODS We developed an NGS gene panel that we used in 22 male infertile patients. The panel consisted of 110 genes exploring the genetic causes of male infertility; namely spermatogenesis failure due to single-gene mutations, central hypogonadism, androgen insensitivity syndrome, congenital hypopituitarism, and primary ciliary dyskinesia. RESULTS NGS and a subsequent sequencing of the positive pathogenic or likely pathogenic variants, 5 patients (23%) were found to have a molecular defect. In particular, pathogenic variants were identified in TEX11, CCDC39, CHD7, and NR5A1 genes. Moreover, 14 variants of unknown significance and 7 novel variants were found that require further functional studies and family segregation. CONCLUSION This extended NGS-based diagnostic approach may represent a useful tool for the diagnosis of male infertility. The development of a custom-made gene panel by NGS seems capable of reducing the proportion of male idiopathic infertility.
Collapse
|
20
|
Sharifi N, Sabbaghian M, Farrahi F, Almadani N, Boroujeni PB, Meybodi AM. Cytogenetic assessment of Iranian infertile men with undescended testis: A retrospective study. JBRA Assist Reprod 2020; 24:400-404. [PMID: 32293821 PMCID: PMC7558886 DOI: 10.5935/1518-0557.20200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective: Undescended testis (UDT) is a urogenital disease that affects fertility. This study looked into the cytogenetic abnormalities of Iranian infertile patients with UDT. Methods: Our study included 522 infertile patients with UDT (case group) and two control groups, one with 300 infertile men without UDT and another with 268 fertile men. Results: Chromosomal abnormalities were found in 45 patients with UDT (8.62%). Seven of the alterations were considered as normal features. Klinefelter syndrome and mosaicism were the most common anomalies. Chromosomal abnormalities were found in 31 infertile men in the control group (10.33%), 13 of which deemed normal and 18 (6%) anomalous. Nine chromosomal abnormalities were found in the second control group with fertile men (3.35%), six deemed normal and three (1.11%) anomalous. Conclusion: Despite the high rate of abnormalities in infertile controls (6%) and the higher rate seen in infertile individuals with UDT indicate a significant prevalence of chromosomal abnormalities in the Iranian population, particularly when the literature suggests that the normal rate of abnormal karyotypes should be within the 0.7-1% range in the general population. The incidence of abnormal karyotypes increased when infertile patients had additional conditions such as UDT.
Collapse
Affiliation(s)
- Neda Sharifi
- Department of Molecular Genetic, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.,Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Department of Genetics, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Department of Andrology, ACECR, Tehran, Iran
| | - Faramarz Farrahi
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Department of Andrology, ACECR, Tehran, Iran
| | - Navid Almadani
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Department of Genetics, ACECR, Tehran, Iran
| | - Parnaz Borjian Boroujeni
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Department of Genetics, ACECR, Tehran, Iran
| | - Anahita Mohseni Meybodi
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Department of Genetics, ACECR, Tehran, Iran
| |
Collapse
|
21
|
Saberiyan M, Mirfakhraie R, Gholami D, Dehdehi L, Teimori H. Investigating the regulatory function of the ANO1-AS2 on the ANO1 gene in infertile men with asthenozoospermia and terato-asthenozoospermia. Exp Mol Pathol 2020; 117:104528. [PMID: 32916161 DOI: 10.1016/j.yexmp.2020.104528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) have a particular expression in the testicular tissue and exhibit a regulatory function on the reproduction system. ANO1-AS2 (linc02584), as an lncRNA is located near the anoctamin1 (ANO1) gene. ANO1 is an important component of the transmembrane system exhibiting expression modifications in the idiopathic infertile men. Therefore, the present study was conducted to investigate the relationship between ANO1-AS2 and ANO1 gene expression with sperm motility and morphology in the patients with asthenozoospermia (AZ) and terato- asthenozoospermia (TAZ). The study population included 32 patients with AZ, 35 patients with TAZ, and 34 people with normozoospermia (NZ, control). The expression levels of ANO1 gene and ANO1-AS2 in the spermatozoa were measured by the quantitative real-time polymerase chain reaction (PCR). Docking analysis was performed to investigate the interactions of the ANO1 gene promoter and intermediate elements with ANO1-AS2. ANO1 gene expression was significantly (P < 0.05) downregulated in the patients however; ANO1-AS2 expression was significantly upregulated (P < 0.05). The subsequent analysis confirmed the inverse correlation between ANO1 and ANO1-AS2. ANO1 gene expression level was significantly positively correlated with sperm motility and morphology (P < 0.05). Moreover, ANO1-AS2 expression showed an inverse correlation with sperm motility and morphology (P < 0.05). Docking analysis confirmed that ANO1-AS2 could stably interact with ANO1 gene promoter. In conclusion, ANO1-AS2 is likely to downregulate the ANO1 gene by interacting with ANO1 gene promoter, which can influence the sperm motility and morphology.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delnya Gholami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Dehdehi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
22
|
Distinct Proteomic Profile of Spermatozoa from Men with Seminomatous and Non-Seminomatous Testicular Germ Cell Tumors. Int J Mol Sci 2020; 21:ijms21144817. [PMID: 32650378 PMCID: PMC7404221 DOI: 10.3390/ijms21144817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are predominant in young males (15–44 years). Seminomatous and non-seminomatous TGCTs account for about 98% of all TGCTs cases. In this study, we aimed to compare the sperm proteome of patients with seminomatous and non-seminomatous TGCTs to identify possible protein biomarkers that could help distinguish between them in a non-invasive manner. We analyzed semen samples from patients with seminomatous or non-seminomatous TGCTs (n = 15/group) that were cryopreserved before the start of cancer treatment. Quantitative proteomic analysis was conducted on pooled samples (n = 3/group) and a total of 258 differentially expressed proteins (DEPs) were identified. The overexpression of acrosin precursor (ACR) and chaperonin containing TCP1 subunit 6B (CCT6B) as well as the underexpression of S100 calcium-binding protein A9 (S100A9) in the spermatozoa of patients with non-seminomatous TGCTs were validated by western blotting conducted on individual samples (n = 6 for seminomatous group and n = 6 for non-seminomatous group). Our overall results suggest an association between the higher and faster invasiveness of non-seminomatous TGCTs and the altered protein expressions, providing important information for future studies.
Collapse
|
23
|
Tian H, Huo Y, Zhang J, Ding S, Wang Z, Li H, Wang L, Lu M, Liu S, Qiu S, Zhang Q. Disruption of ubiquitin specific protease 26 gene causes male subfertility associated with spermatogenesis defects in mice†. Biol Reprod 2020; 100:1118-1128. [PMID: 30561524 DOI: 10.1093/biolre/ioy258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 11/01/2017] [Accepted: 12/15/2018] [Indexed: 11/14/2022] Open
Abstract
Ubiquitin-specific protease 26 (USP26) is an X-linked gene exclusively expressed in the testis and codes for the USP26, a peptidase enzyme that belongs to the deubiquitinating enzyme family. Recent studies have indicated that mutations in USP26 affect spermatogenesis and are associated with male infertility in humans and mice. However, the exact role of USP26 in spermatogenesis and how it affects male reproduction remains unknown. In this study, we generated a conventional Usp26 knockout mouse model and found that deletion of Usp26 in male mice (Usp26-/Y) leads to significantly reduced pup numbers per litter and significantly increased intervals between two consecutive offspring. We also found that the serum follicle stimulating hormone and testosterone levels of adult Usp26-/Y mice were significantly decreased compared to those of Usp26+/Y mice. Histological examination results showed that Usp26-/Y mice had significantly increased percentage of abnormal seminiferous tubules at different ages. Flow cytometry results exhibited that Usp26-/Y mice had significantly reduced percentage of mature haploid cells in the testes compared to Usp26+/Y mice. Sperm counts in epididymis were also significantly declined in Usp26-/Y mice compared to those in Usp26+/Y mice. Immunohistochemistry and immunofluorescence staining and immunoprecipitation analysis results showed that USP26 and androgen receptor were co-localized in mouse testicular cells at different ages and they both had physiological interactions. All these results demonstrated that the loss of Usp26 affects spermatogenesis and hormone secretion and causes male subfertility. Our study also provides the evidence on the interactions between USP26 and androgen receptor in mouse testis, whereby pointing to a potential mechanism.
Collapse
Affiliation(s)
- Hong Tian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yongwei Huo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jie Zhang
- Dalian Municipal Women and Children's Medical Center, Dalian, Liaoning, China
| | - Shangshu Ding
- Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhiyong Wang
- Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hecheng Li
- Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lirong Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ming Lu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Sen Liu
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shudong Qiu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Center for Aging.,Tulane Cancer Center, Louisiana Cancer Research Consortium
| |
Collapse
|
24
|
Heidary Z, Saliminejad K, Zaki-Dizaji M, Khorram Khorshid HR. Genetic aspects of idiopathic asthenozoospermia as a cause of male infertility. HUM FERTIL 2020; 23:83-92. [PMID: 30198353 DOI: 10.1080/14647273.2018.1504325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infertility is a worldwide problem affecting about 15% of couples trying to conceive. Asthenozoospermia (AZS) is one of the major causes of male infertility, diagnosed by reduced sperm motility, and has no effective therapeutic treatment. To date, a few genes have been found to be associated with AZS in humans and mice, but in most of cases its molecular aetiology remains unknown. Genetic causes of AZS may include chromosomal abnormalities, specific mutations of nuclear and mitochondrial genes. However recently, epigenetic factors, altered microRNAs expression signature, and proteomics have shed light on the pathophysiological basis of AZS. This review article summarises the reported genetic causes of AZS.
Collapse
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Zaki-Dizaji
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics Research Centre University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
25
|
Ra AG, Evans PJ, Awasthi A, Srinivas-Shankar U. Pituitary hyperplasia with Sertoli cell-only and 47,XYY syndromes: an uncommon triad. BMJ Case Rep 2020; 13:13/5/e233100. [PMID: 32414773 DOI: 10.1136/bcr-2019-233100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We report the case history of a 32-year-old man with no phenotypical abnormalities who presented with infertility. Semen analysis revealed azoospermia and testicular biopsy confirmed Sertoli cell-only (SCO) syndrome. Karyotyping revealed 47,XYY and pituitary hyperplasia was found on MRI pituitary. In our patient, 47,XYY karyotype is likely to have given rise to SCO syndrome that in turn resulted in pituitary hyperplasia. The patient was evaluated by various members of the multidisciplinary team including the pituitary surgeon, endocrinologist and andrologist. The patient's partner successfully delivered a healthy baby via in vitro fertilisation with donor sperm. This triad of diagnoses (SCO syndrome, 47,XYY karyotype and pituitary hyperplasia) has not been reported previously. SCO syndrome should be considered in the presence of azoospermia, elevated follicle-stimulating hormone, low inhibin-B and normal testosterone levels. Our case report also highlights the importance of excluding genetic causes of infertility even when the patient has no phenotypical abnormalities.
Collapse
Affiliation(s)
- Amelle Geurim Ra
- Arrowe Park Hospital, Wirral, UK .,St George's Hospital, London, UK
| | | | | | | |
Collapse
|
26
|
Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia 2020; 53:e13586. [PMID: 32314821 DOI: 10.1111/and.13586] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Male infertility is a complex condition with a strong genetic and epigenetic background. This review discusses the importance of genetic and epigenetic factors in the pathophysiology of male infertility. The interplay between thousands of genes, the epigenetic control of gene expression, and environmental and lifestyle factors, which influence genetic and epigenetic variants, determines the resulting male infertility phenotype. Currently, karyotyping, Y-chromosome microdeletion screening and CFTR gene mutation tests are routinely performed to investigate a possible genetic aetiology in patients with azoospermia and severe oligozoospermia. However, current testing is limited in its ability to identify a variety of genetic and epigenetic conditions that might be implicated in both idiopathic and unexplained infertility. Several epimutations of imprinting genes and developmental genes have been postulated to be candidate markers for male infertility. As such, development of novel diagnostic panels is essential to change the current landscape with regard to prevention, diagnosis and management. Understanding the underlying genetic mechanisms related to the pathophysiology of male infertility, and the impact of environmental exposures and lifestyle factors on gene expression might aid clinicians in developing individualised treatment strategies.
Collapse
Affiliation(s)
- Sezgin Gunes
- Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey.,Molecular Medicine, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Campinas, São Paulo, SP, Brazil.,Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, São Paulo, SP, Brazil.,Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Rocca MS, Msaki A, Ghezzi M, Cosci I, Pilichou K, Celeghin R, Foresta C, Ferlin A. Development of a novel next-generation sequencing panel for diagnosis of quantitative spermatogenic impairment. J Assist Reprod Genet 2020; 37:753-762. [PMID: 32242295 DOI: 10.1007/s10815-020-01747-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To develop and assess a novel custom next-generation sequencing (NGS) panel for male infertility genetic diagnosis. METHODS A total of 241 subjects with diagnosis of idiopathic infertility ranging from azoospermia to normozoospermia were sequenced by a custom NGS panel including AR, FSHB, FSHR, KLHL10, NR5A1, NANOS1, SEPT12, SYCP3, TEX11 genes. Variants with minor allele frequency < 1% were confirmed by Sanger sequencing. RESULTS Nineteen missense variants were detected in 23 subjects with abnormal sperm count, whilst no variants were identified in normozoospermic men. Of identified variants, we prioritized variants classified as pathogenic and of uncertain significance (VUS) (63.1%, 12/19). No missense variants were found in males with normal seminal parameters (0/67). Therefore, the prevalence of variants was significantly higher in patients with spermatogenic impairment (16/174 vs 0/67, p = 0.007). CONCLUSION This study confirms the utility to apply NGS panel for infertility diagnosis in order to find new genetic variants potentially linked to male infertility with much higher accuracy than standard tests suggested by guidelines. Indeed, based on biological significance, prevalence in the general population and clinical data of patients, it is plausible that identified variants in this study might be linked to quantitative spermatogenic impairment, although further studies are needed.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padova, Italy
| | - Aichi Msaki
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padova, Italy
| | - Marco Ghezzi
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padova, Italy
| | - Ilaria Cosci
- Familial Cancer Clinic, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Kalliopi Pilichou
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Rudy Celeghin
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padova, Italy.
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
Nassau DE, Chu KY, Blachman-Braun R, Castellan M, Ramasamy R. The pediatric patient and future fertility: optimizing long-term male reproductive health outcomes. Fertil Steril 2020; 113:489-499. [DOI: 10.1016/j.fertnstert.2020.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
|
29
|
Sun M, Wang R, Zhang H, Jiang Y, He J, Li S, Liu R. Molecular cytogenetic characterization of small supernumerary marker 15 in infertile male: A case report. Exp Ther Med 2020; 19:2927-2932. [PMID: 32256778 PMCID: PMC7086184 DOI: 10.3892/etm.2020.8542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Small supernumerary marker chromosomes (sSMCs) are defined as structurally abnormal chromosomes that may be detected pre- or postnataly in patients with developmental and/or mental retardation or infertility. sSMC on chromosome 15 accounts for the highest proportion of all sSMCs and may be detected in subfertile individuals. The present study reports the case of a male patient with oligoasthenoteratozoospermia and an sSMC. The sSMC was identified and characterized according to G-banding analysis, chromosomal microarray analysis (CMA) and fluorescence in situ hybridization (FISH) analysis. Chromosomal karyotype analysis suggested that the patient presented with 47,XY,+mar. CMA was used to characterize the sSMC, which revealed a 0.44-Mb microduplication in 6q25.3q26. Subsequently, FISH using centromere-specific probes for chromosomes 13/21, 14/22 and 15 was applied to identify the origin of the sSMC, which was finally determined to be inverted duplicated(15)(q11.2). It was hypothesized that heterochromatin in the sSMC is responsible for the patient's fertility problem. The presence of heterochromatin may disrupt regular meiosis, thereby affecting normal spermatogenesis. Impaired spermatogenesis in infertile males with an sSMC derived from chromosome 15 was also reviewed by searching published literature and the sSMC database (http://ssmc-tl.com/sSMC.html). For patients with low sperm parameters and complete absence of spermatozoa in the ejaculate, including infertile males with an sSMC with spermatozoa, intracytoplasmic sperm injection is considered as an effective assisted reproductive technique. It may be concluded that molecular cytogenetic techniques are critical tools for delineating sSMCs in infertile males and may be beneficial in identifying sSMC carriers to ensure they receive clinical genetic counseling.
Collapse
Affiliation(s)
- Meiling Sun
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruixue Wang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing He
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
30
|
Heidary Z, Zaki-Dizaji M, Saliminejad K, Edalatkhah H, Khorram Khorshid HR. MiR-4485-3p expression reduced in spermatozoa of men with idiopathic asthenozoospermia. Andrologia 2020; 52:e13539. [PMID: 32030798 DOI: 10.1111/and.13539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Asthenozoospermia (AZS), which characterised by reduced forward sperm motility, is a common cause of male infertility. Recently, mitochondrial dysfunction reported in AZS men came to attention for finding the molecular aetiology of AZS. Mitochondria-related microRNAs (miRNAs) are the most important regulators of mitochondrial function through post-transcriptionally modulation of gene expression. Therefore, this study aims to evaluate the expression of four recently reported mitochondrial-related miRNAs (miR-4485-3p/4484/4461 and 4463) in the sperm sample of asthenozoospermic men. RNA was extracted from spermatozoa of 74 volunteers (39 patients with idiopathic AZS and 35 controls with normal fertility), and relative gene expression analysis was performed by quantitative PCR. We used SNORD48 as a normaliser gene, and quantification was calculated by 2-ΔΔCt method. The expression of miR-4484 and miR-4461 was not detected in the spermatozoa of cases and controls. However, miR-4485-3p (p = .006) was significantly downregulated in the AZS men compared with the controls, but the miR-4463 expression was not significantly different between the two groups (p = .5). Bioinformatic analysis identified three target genes for miR-4485-3p (DNAH1, KIT and PARK7) that are related to male infertility. In conclusion, the downregulation of miR-4485-3p was associated with idiopathic AZS, which could be a molecular link between mitochondrial dysfunction and AZS.
Collapse
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
31
|
Babakhanzadeh E, Nazari M, Ghasemifar S, Khodadadian A. Some of the Factors Involved in Male Infertility: A Prospective Review. Int J Gen Med 2020; 13:29-41. [PMID: 32104049 PMCID: PMC7008178 DOI: 10.2147/ijgm.s241099] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Infertility is defined as the inability of couples to have a baby after one year of regular unprotected intercourse, affecting 10 to 15% of couples. According to the latest WHO statistics, approximately 50-80 million people worldwide sufer from infertility, and male factors are responsible for approximately 20-30% of all infertility cases. The diagnosis of infertility in men is mainly based on semen analysis. The main parameters of semen include: concentration, appearance and motility of sperm. Causes of infertility in men include a variety of things including hormonal disorders, physical problems, lifestyle problems, psychological issues, sex problems, chromosomal abnormalities and single-gene defects. Despite numerous efforts by researchers to identify the underlying causes of male infertility, about 70% of cases remain unknown. These statistics show a lack of understanding of the mechanisms involved in male infertility. This article focuses on the histology of testicular tissue samples, the male reproductive structure, factors affecting male infertility, strategies available to find genes involved in infertility, existing therapeutic methods for male infertility, and sperm recovery in infertile men.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Ghasemifar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
32
|
Beneke T, Banecki K, Fochler S, Gluenz E. LAX28 is required for the stable assembly of the inner dynein arm f complex, and the tether and tether head complex in Leishmania flagella. J Cell Sci 2020; 133:jcs239855. [PMID: 31932510 PMCID: PMC7747692 DOI: 10.1242/jcs.239855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Motile eukaryotic flagella beat through coordinated activity of dynein motor proteins; however, the mechanisms of dynein coordination and regulation are incompletely understood. The inner dynein arm (IDA) f complex (also known as the I1 complex), and the tether and tether head (T/TH) complex are thought to be key regulators of dynein action but, unlike the IDA f complex, T/TH proteins remain poorly characterised. Here, we characterised T/TH-associated proteins in the protist Leishmania mexicana Proteome analysis of axonemes from null mutants for the CFAP44 T/TH protein showed that they lacked the IDA f protein IC140 and a novel 28-kDa axonemal protein, LAX28. Sequence analysis identified similarities between LAX28 and the uncharacterised human sperm tail protein TEX47, both sharing features with sensory BLUF-domain-containing proteins. Leishmania lacking LAX28, CFAP44 or IC140 retained some motility, albeit with reduced swimming speed and directionality and a propensity for flagellar curling. Expression of tagged proteins in different null mutant backgrounds showed that the axonemal localisation of LAX28 requires CFAP44 and IC140, and the axonemal localisations of CFAP44 and IC140 both depend on LAX28. These data demonstrate a role for LAX28 in motility and show mutual dependencies of IDA f and T/TH-associated proteins for axonemal assembly in Leishmania.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katherine Banecki
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sophia Fochler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
33
|
Precone V, Cannarella R, Paolacci S, Busetto GM, Beccari T, Stuppia L, Tonini G, Zulian A, Marceddu G, Calogero AE, Bertelli M. Male Infertility Diagnosis: Improvement of Genetic Analysis Performance by the Introduction of Pre-Diagnostic Genes in a Next-Generation Sequencing Custom-Made Panel. Front Endocrinol (Lausanne) 2020; 11:605237. [PMID: 33574797 PMCID: PMC7872015 DOI: 10.3389/fendo.2020.605237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Infertility affects about 7% of the general male population. The underlying cause of male infertility is undefined in about 50% of cases (idiopathic infertility). The number of genes involved in human spermatogenesis is over two thousand. Therefore, it is essential to analyze a large number of genes that may be involved in male infertility. This study aimed to test idiopathic male infertile patients negative for a validated panel of "diagnostic" genes, for a wide panel of genes that we have defined as "pre-diagnostic." METHODS We developed a next-generation sequencing (NGS) gene panel including 65 pre-diagnostic genes that were used in 12 patients who were negative to a diagnostic genetic test for male infertility disorders, including primary spermatogenic failure and central hypogonadism, consisting of 110 genes. RESULTS After NGS sequencing, variants in pre-diagnostic genes were identified in 10/12 patients who were negative to a diagnostic test for primary spermatogenic failure (n = 9) or central hypogonadism (n = 1) due to mutations of single genes. Two pathogenic variants of DNAH5 and CFTR genes and three uncertain significance variants of DNAI1, DNAH11, and CCDC40 genes were found. Moreover, three variants with high impact were found in AMELY, CATSPER 2, and ADCY10 genes. CONCLUSION This study suggests that searching for pre-diagnostic genes may be of relevance to find the cause of infertility in patients with apparently idiopathic primary spermatogenic failure due to mutations of single genes and central hypogonadism.
Collapse
Affiliation(s)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Gian Maria Busetto
- Department of Urology, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Gerolamo Tonini
- Department of Surgery, Fondazione Poliambulanza, Brescia, Italy
| | | | | | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto, Italy
- EBTNA-LAB, Rovereto, Italy
| |
Collapse
|
34
|
Anderson K, Cañadas-Garre M, Chambers R, Maxwell AP, McKnight AJ. The Challenges of Chromosome Y Analysis and the Implications for Chronic Kidney Disease. Front Genet 2019; 10:781. [PMID: 31552093 PMCID: PMC6737325 DOI: 10.3389/fgene.2019.00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The role of chromosome Y in chronic kidney disease (CKD) remains unknown, as chromosome Y is typically excluded from genetic analysis in CKD. The complex, sex-specific presentation of CKD could be influenced by chromosome Y genetic variation, but there is limited published research available to confirm or reject this hypothesis. Although traditionally thought to be associated with male-specific disease, evidence linking chromosome Y genetic variation to common complex disorders highlights a potential gap in CKD research. Chromosome Y variation has been associated with cardiovascular disease, a condition closely linked to CKD and one with a very similar sexual dimorphism. Relatively few sources of genetic variation in chromosome Y have been examined in CKD. The association between chromosome Y aneuploidy and CKD has never been explored comprehensively, while analyses of microdeletions, copy number variation, and single-nucleotide polymorphisms in CKD have been largely limited to the autosomes or chromosome X. In many studies, it is unclear whether the analyses excluded chromosome Y or simply did not report negative results. Lack of imputation, poor cross-study comparability, and requirement for separate or additional analyses in comparison with autosomal chromosomes means that chromosome Y is under-investigated in the context of CKD. Limitations in genotyping arrays could be overcome through use of whole-chromosome sequencing of chromosome Y that may allow analysis of many different types of genetic variation across the chromosome to determine if chromosome Y genetic variation is associated with CKD.
Collapse
Affiliation(s)
- Kerry Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Robyn Chambers
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Alexander Peter Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
35
|
Ferlin A, Dipresa S, Delbarba A, Maffezzoni F, Porcelli T, Cappelli C, Foresta C. Contemporary genetics-based diagnostics of male infertility. Expert Rev Mol Diagn 2019; 19:623-633. [PMID: 31215260 DOI: 10.1080/14737159.2019.1633917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
Introduction Thousands of genes are implicated in spermatogenesis, testicular development and endocrine regulation of testicular function. The genetic contribution to male infertility is therefore considerable, and basic and clinical research in the last years found a number of genes that could potentially be used in clinical practice. Research has also been pushed by new technologies for genetic analysis. However, genetic analyses currently recommended in standard clinical practice are still relatively few. Areas covered We review the genetic causes of male infertility, distinguishing those already approved for routine clinical application from those that are still not supported by adequate clinical studies or those responsible for very rare cause of male infertility. Genetic causes of male infertility vary from chromosomal abnormalities to copy number variations (CNVs), to single-gene mutations. Expert opinion Clinically, the most important aspect is related to the correct identification of subjects to be tested and the right application of genetic tests based on clear clinical data. A correct application of available genetic tests in the different forms of male infertility allows receiving a better and defined diagnosis, has an important role in clinical decision (treatment, prognosis), and allows appropriate genetic counseling especially in cases that should undergo assisted reproduction techniques.
Collapse
Affiliation(s)
- Alberto Ferlin
- a Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism , University of Brescia , Brescia , Italy
| | - Savina Dipresa
- b Department of Medicine, Unit of Andrology and Reproductive Medicine , University of Padova , Padova , Italy
| | - Andrea Delbarba
- c Unit of Endocrinology and Metabolism, Department of Medicine , ASST Spedali Civili Brescia , Brescia , Italy
| | - Filippo Maffezzoni
- d Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Teresa Porcelli
- e Endocrinology , Montichiari Hospital, ASST Spedali Civili Brescia , Montichiari , Italy
| | - Carlo Cappelli
- a Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism , University of Brescia , Brescia , Italy
| | - Carlo Foresta
- b Department of Medicine, Unit of Andrology and Reproductive Medicine , University of Padova , Padova , Italy
| |
Collapse
|
36
|
Heidary Z, Zaki‐Dizaji M, Saliminejad K, Khorram Khorshid HR. MicroRNA profiling in spermatozoa of men with unexplained asthenozoospermia. Andrologia 2019; 51:e13284. [DOI: 10.1111/and.13284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Center Avicenna Research Institute, ACECR Tehran Iran
| | - Majid Zaki‐Dizaji
- Legal Medicine Research Center Legal Medicine Organization Tehran Iran
- Department of Medical Genetics, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center Avicenna Research Institute, ACECR Tehran Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Center Avicenna Research Institute, ACECR Tehran Iran
- Genetics Research Center University of Social Welfare and Rehabilitation Sciences Tehran Iran
| |
Collapse
|
37
|
Mobasseri N, Nikzad H, Karimian M. Protective effect of oestrogen receptor α-PvuII transition against idiopathic male infertility: a case-control study and meta-analysis. Reprod Biomed Online 2019; 38:588-598. [PMID: 30738766 DOI: 10.1016/j.rbmo.2019.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
RESEARCH QUESTION Is there any genetic association between oestrogen receptor alpha [ERα]-PvuII polymorphism and idiopathic male infertility? DESIGN A total of 226 infertile and 213 fertile men participated in the present case-control study. ERα-PvuII genotyping was performed using the polymerase chain reaction-restriction fragment length polymorphism [PCR-RFLP] method. Meta-analysis was also performed by pooling data collected from seven other eligible studies identified by searches of PubMed, Embase, Google Scholar, and Science Direct databases. Summary odds ratios were estimated by fixed- or random-effects models. The molecular effects of ERα-PvuII polymorphism were evaluated by bioinformatics tools. RESULTS A significant protective association was reported between ERα-PvuII and male infertility in the homozygote model [OR=0.54, 95%CI=0.3-0.98, p=0.042]. Also, a similar association was observed in asthenozoospermia subgroup [OR=0.4, 95%CI=0.18-0.9, p=0.025]. Meta-analysis also revealed that the ER-PvuII polymorphism was significantly associated with the decreased risk of male infertility in the heterozygote co-dominant model [OR=0.80, 95%CI=0.64-0.99, p=0.042]. Moreover, similar protective results were reported in stratified analyses in Caucasian subgroup in the dominant genetic model [OR=0.66, 95%CI=0.45-0.96, p=0.029] and in the heterozygote co-dominant model [OR=0.62, 95%CI=0.41-0.93, p=0.021]. A significant association was also found in studies with sample size of less than 400 subjects in heterozygote co-dominant model [OR=0.69, 95%CI=0.50-0.95, p=0.023]. The bioinformatics data indicated that ER-PvuII polymorphism could significantly affect RNA structure of ERα [p=0.004]. CONCLUSION The ERα-PvuII polymorphism could be considered as a possible protective factor against male infertility.
Collapse
Affiliation(s)
- Narges Mobasseri
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Karimian
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet 2019; 138:125-140. [PMID: 30656449 DOI: 10.1007/s00439-019-01974-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Genetic anomalies are known to affect about 15% of infertile patients with azoospermia or severe oligozoospermia. Despite a throughout diagnostic work-up, in up to the 72% of the male partners of infertile couples, no etiological factor can be found; hence, the cause of infertility remains unclear. Recently, several novel genetic causes of spermatogenic failure (SPGF) have been described. The aim of this review was to collect all the available evidence of SPGF genetics, matching data from in-vitro and animal models with those in human beings to provide a comprehensive and updated overview of the genes capable of affecting spermatogenesis. By reviewing the literature, we provided a list of 60 candidate genes for SPGF. Their investigation by Next Generation Sequencing in large cohorts of patients with apparently idiopathic infertility would provide new interesting data about their racial- and ethnic-related prevalence in infertile patients, likely raising the diagnostic yields. We propose a phenotype-based approach to identify the genes to look for.
Collapse
|
39
|
Nagirnaja L, Aston KI, Conrad DF. Genetic intersection of male infertility and cancer. Fertil Steril 2018; 109:20-26. [PMID: 29307395 DOI: 10.1016/j.fertnstert.2017.10.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Recent epidemiological studies have identified an association between male factor infertility and increased cancer risk, however, the underlying etiology for the shared risk has not been investigated. It is likely that much of the association between the two disease states can be attributed to underlying genetic lesions. In this article we review the reported associations between cancer and spermatogenic defects, and through database searches we identify candidate genes and gene classes that could explain some of the observed shared genetic risk. We discuss the importance of fully characterizing the genetic basis for the relationship between cancer and male factor infertility and propose future studies to that end.
Collapse
Affiliation(s)
- Liina Nagirnaja
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth I Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
40
|
Barnabas LC, Sumathy A, Indumathi MA, Varma TR, Shetty S, Kadandale JS, Kar B. Localization of the SRY Gene on Chromosome 3 in a Patient with Azoospermia and a Complex Karyotype 45,X/46,X,i(Y)(q10)/46,XX/ 47,XX,i(Y)(q10). Cytogenet Genome Res 2018; 156:134-139. [DOI: 10.1159/000494464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
This study aimed to identify the cause of azoospermia in a 38-year-old infertile man who was referred for genetic testing. Cytogenetic evaluation was performed by G-banding, C-banding, and FISH using centromeric probes for chromosomes X and Y and showed the presence of a monocentric isochromosome Y with a complex, mosaic karyotype 45,X/46,X,i(Y)(q10)/46,XX/47,XX,i(Y)(q10). Multiplex PCR for the commonly deleted genes in the AZFa, AZFb, and AZFc regions of the Y chromosome was performed and indicated the presence of all 3 regions. Further, PCR amplification followed by DNA sequencing of the SRY gene was done, which ruled out mutations in that gene. To identify the position of the SRY gene, FISH using a locus-specific probe was used and showed that the gene had been translocated to chromosome 3. Subtelomere FISH for 3q and Yp evidenced that the subtelomeric region of the Y chromosome was found on the terminal region of 3q. The clinical symptoms of the patient can be attributed to this abnormal genotype. The importance of genetic testing in infertile patients and the need for genetic counselling to prevent the transmission of the defect are emphasized.
Collapse
|
41
|
Genetic mapping of a male factor subfertility locus on mouse chromosome 4. Mamm Genome 2018; 29:663-669. [PMID: 30171338 PMCID: PMC6182756 DOI: 10.1007/s00335-018-9773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/10/2018] [Indexed: 11/23/2022]
Abstract
Male reproductive anomalies are widely distributed among mammals, and male factors are estimated to contribute to approximately 50% of cases of human infertility. The B10.M/Sgn (B10.M) mouse strain exhibits two adverse reproductive phenotypes: severe teratospermia and male subfertility. Although teratospermia is known to be heritable, the relationship between teratospermia and male subfertility has not been well characterized. The fertility of B10.M male mice is considerably lower (~ 30%) than that of standard laboratory mouse strains (~ 70%). To genetically analyze male subfertility, F2 males were produced by intercrossing the F1 progeny of female B10.M and male C3H/HeN mice. The fertility of each F2 male mouse was assessed based on the outcomes of matings with five females. Statistical analysis of correlations between the two reproductive phenotypes (teratospermia and subfertility) in F2 males (n = 177) revealed that teratospermia is not the cause of male subfertility. Quantitative trait loci (QTL) analysis of the male subfertility phenotype (n = 128) using GigaMUGA markers mapped one significant QTL peak to chromosome 4 at 62.9 centimorgans (cM) with a logarithm of odds score of 11.81 (P < 0.05). We named the QTL locus Mfsf1 (male factor subfertility 1). Further genetic analysis using recombinant males restricted the physical area to 1.53 megabasepairs (Mbp), encompassing 22 protein-coding genes. In addition, we found one significant QTL and one indicative QTL on chromosome 5 and 12, respectively, that interacted with the Mfsf1 locus. Our results demonstrate that genetic dissection of male subfertility in the B10.M strain is a useful model for characterizing the complex genetic mechanisms underlying reproduction and infertility.
Collapse
|
42
|
Liehr T, Hamid Al-Rikabi AB. Impaired Spermatogenesis due to Small Supernumerary Marker Chromosomes: The Reason for Infertility Is Only Reliably Ascertainable by Cytogenetics. Sex Dev 2018; 12:281-287. [PMID: 30089300 DOI: 10.1159/000491870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 01/01/2023] Open
Abstract
Infertile male with small supernumerary marker chromosomes (sSMCs) were studied. Overall, 37 own patients and 166 cases from the literature were included. sSMCs of our own cases were characterized by multicolor-FISH probe sets. Available clinical data of the infertile males were also evaluated, and meta-analysis on suitability of molecular karyotyping for sSMC characterization was done. As a result, sSMCs can be optimally characterized by single-cell directed (molecular) cytogenetics. In infertile males, sSMCs derive predominantly from one of the acrocentric chromosomes, mainly chromosomes 15, 14, and 22. Interestingly, altered spermiograms were found in 62% of the males with an sSMC, while the remainder cases had infertility in connection with recurrent spontaneous abortions. Meta-analysis for detectability of sSMCs by aCGH revealed that 81-87% of the cases would have not been picked up by exclusive use of that approach. Thus, as impaired spermatogenesis is known to be indicative for gross chromosomal anomalies in infertile male patients, it can be concluded from this study that the presence of sSMCs also needs to be considered. However, sSMCs can only be reliably detected by standard karyotyping and not by modern high throughput approaches like aCGH and next-generation sequencing.
Collapse
|
43
|
Patel B, Parets S, Akana M, Kellogg G, Jansen M, Chang C, Cai Y, Fox R, Niknazar M, Shraga R, Hunter C, Pollock A, Wisotzkey R, Jaremko M, Bisignano A, Puig O. Comprehensive genetic testing for female and male infertility using next-generation sequencing. J Assist Reprod Genet 2018; 35:1489-1496. [PMID: 29779145 PMCID: PMC6086787 DOI: 10.1007/s10815-018-1204-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To develop a comprehensive genetic test for female and male infertility in support of medical decisions during assisted reproductive technology (ART) protocols. METHODS We developed a next-generation sequencing (NGS) gene panel consisting of 87 genes including promoters, 5' and 3' untranslated regions, exons, and selected introns. In addition, sex chromosome aneuploidies and Y chromosome microdeletions were analyzed concomitantly using the same panel. RESULTS The NGS panel was analytically validated by retrospective analysis of 118 genomic DNA samples with known variants in loci representative of female and male infertility. Our results showed analytical accuracy of > 99%, with > 98% sensitivity for single-nucleotide variants (SNVs) and > 91% sensitivity for insertions/deletions (indels). Clinical sensitivity was assessed with samples containing variants representative of male and female infertility, and it was 100% for SNVs/indels, CFTR IVS8-5T variants, sex chromosome aneuploidies, and copy number variants (CNVs) and > 93% for Y chromosome microdeletions. Cost analysis shows potential savings when comparing this single NGS assay with the standard approach, which includes multiple assays. CONCLUSIONS A single, comprehensive, NGS panel can simplify the ordering process for healthcare providers, reduce turnaround time, and lower the overall cost of testing for genetic assessment of infertility in females and males, while maintaining accuracy.
Collapse
Affiliation(s)
- Bonny Patel
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Sasha Parets
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Matthew Akana
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Gregory Kellogg
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Michael Jansen
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Chihyu Chang
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Ying Cai
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Rebecca Fox
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | | | - Roman Shraga
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Colby Hunter
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Andrew Pollock
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | | | | | - Alex Bisignano
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA
| | - Oscar Puig
- Phosphorus, Inc., 1140 Broadway St, New York, NY, 10001, USA.
| |
Collapse
|
44
|
Ali A, Mistry BV, Ahmed HA, Abdulla R, Amer HA, Prince A, Alazami AM, Alkuraya FS, Assiri A. Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. Sci Rep 2018; 8:9202. [PMID: 29907856 PMCID: PMC6003934 DOI: 10.1038/s41598-018-27379-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
DDB1– and CUL4–associated factor 17 (Dcaf17) is a member of DCAF family genes that encode substrate receptor proteins for Cullin-RING E3 ubiquitin ligases, which play critical roles in many cellular processes. To unravel the function of DCAF17, we performed expression profiling of Dcaf17 in different tissues of wild type mouse by qRT-PCR and generated Dcaf17 knockout mice by gene targeting. Expression profiling of Dcaf17 showed highest expression in testis. Analyses of Dcaf17 transcripts during post-natal development of testis at different ages displayed gradual increase in Dcaf17 mRNA levels with the age. Although Dcaf17 disruption did not have any effect on female fertility, Dcaf17 deletion led to male infertility due to abnormal sperm development. The Dcaf17−/− mice produced low number of sperm with abnormal shape and significantly low motility. Histological examination of the Dcaf17−/− testis revealed impaired spermatogenesis with presence of vacuoles and sloughed cells in the seminiferous tubules. Disruption of Dcaf17 caused asymmetric acrosome capping, impaired nuclear compaction and abnormal round spermatid to elongated spermatid transition. For the first time, these data indicate that DCAF17 is essential for spermiogenesis.
Collapse
Affiliation(s)
- Asmaa Ali
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Bhavesh V Mistry
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hala A Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Razan Abdulla
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hassan A Amer
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Abdelbary Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Abdullah Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia. .,College of Medicine, AlFaisal University, Riyadh, Saudi Arabia. .,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
45
|
Jin BF, Ji ZY, Su ZY, Mei LB, Huang XJ, Lin SB, Li P, Sha YW. Identification of a novel mutation in FGFR1 gene in patients with Kallmann syndrome by high throughput sequencing. Syst Biol Reprod Med 2018; 64:202-206. [PMID: 29658329 DOI: 10.1080/19396368.2018.1458919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kallmann syndrome (KS) is a rare clinical and genetic heterogeneity disease, which is familial or sporadic. KS is known to have three patterns of inheritance: X linked recessive inheritance, autosomal dominant inheritance and rare autosomal recessive inheritance. Here, we report a sibling pedigree with autosomal dominant inheritance of KS, and we identified a novel heterozygous frameshift mutation c.299_300insCCGCAGACTCCGGCCTCTATGC (p.C101Rfs*17) in FGFR1 gene using whole-exome sequencing (WES). The mutation and affection status were cosegregated. The mutation is not present in the dbSNP, 1000 Genome, ExAC, and gnomAD databases. The discovery of this new mutation in the FGFR1 gene enriches the spectrum of FGFR1 mutations in patients with KS. ABBREVIATIONS FGFR1: fibroblast growth factor receptor 1; HH: hypogonadotropic hypogonadism; KS: Kallmann syndrome; MRI: magnetic resonance imaging; WES: whole-exome sequencing.
Collapse
Affiliation(s)
- Bao-Fang Jin
- a Andrology Department of Integrative Medicine , Zhongda Hospital, School of Medicine, Southeast University , Nanjing , China
| | - Zhi-Yong Ji
- b Department of Reproductive Medicine , Xiamen Maternity and Child Care Hospital , Xiamen , Fujian , China
| | - Zhi-Ying Su
- b Department of Reproductive Medicine , Xiamen Maternity and Child Care Hospital , Xiamen , Fujian , China
| | - Li-Bin Mei
- b Department of Reproductive Medicine , Xiamen Maternity and Child Care Hospital , Xiamen , Fujian , China
| | - Xian-Jing Huang
- b Department of Reproductive Medicine , Xiamen Maternity and Child Care Hospital , Xiamen , Fujian , China
| | - Shao-Bin Lin
- b Department of Reproductive Medicine , Xiamen Maternity and Child Care Hospital , Xiamen , Fujian , China
| | - Ping Li
- b Department of Reproductive Medicine , Xiamen Maternity and Child Care Hospital , Xiamen , Fujian , China
| | - Yan-Wei Sha
- b Department of Reproductive Medicine , Xiamen Maternity and Child Care Hospital , Xiamen , Fujian , China
| |
Collapse
|
46
|
Jiang W, Shi L, Liu H, Cao J, Zhu P, Zhang J, Yu M, Guo Y, Cui Y, Xia X. Systematic review and meta-analysis of the genetic association between protamine polymorphism and male infertility. Andrologia 2018. [PMID: 29537099 DOI: 10.1111/and.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While several previous studies have proposed an association between male infertility and protamine polymorphism, the reported findings have shown some inconsistency. To evaluate the potential association between the two most common single nucleotide polymorphisms (rs2301365 and rs1646022) in protamine and male infertility, we performed a meta-analysis involving 2713 cases and 2086 controls from 15 published case-controlled studies. Overall, our analysis showed significant associations between the specific protamine single-nucleotide polymorphism (rs2301365) and male infertility, and this association was indicated by all of the models we tested. Subgroup analysis revealed significant associations with a Caucasian background, PCR sequence, population-based, case size of > 150 and case size of < 150 subgroups. Similarly, significant associations were found between rs1646022 and male infertility in the hospital population and case size of < 200 subgroups. However, trial sequential analysis showed that the number of patients in the study did not reach optimal information size. Further studies with larger sample sizes are now warranted to clarify the potential roles of the two protamine polymorphisms in the pathogenesis of male infertility. This may help us to understand the precise molecular mechanisms underlying the effect of protamines upon male infertility.
Collapse
Affiliation(s)
- W Jiang
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - L Shi
- Department of Andrology, Drum Tower Hospital Affiliated to Nanjing University School of Medicine, Nanjing, China
| | - H Liu
- Department of Clinical Laboratory, The First People' Hospital of Lianyungang, Lianyungang, China
| | - J Cao
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - P Zhu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - J Zhang
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - M Yu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Y Guo
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Y Cui
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - X Xia
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
47
|
Arafa MM, Majzoub A, AlSaid SS, El Ansari W, Al Ansari A, Elbardisi Y, Elbardisi HT. Chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar and their association with sperm retrieval intracytoplasmic sperm injection outcomes. Arab J Urol 2017; 16:132-139. [PMID: 29713544 PMCID: PMC5922002 DOI: 10.1016/j.aju.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/04/2017] [Accepted: 11/19/2017] [Indexed: 11/17/2022] Open
Abstract
Objective To study the types and incidence of chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar, and to compare the hormonal changes, testicular sperm retrieval rate, and intracytoplasmic sperm injection (ICSI) outcome between patients with chromosomal abnormalities and patients with idiopathic infertility. Patients and methods This study involved the retrospective chart review of 625 infertile male patients attending an academic tertiary medical centre in Qatar. Retrieved information included data on medical history, family history, clinical examination, semen analysis, initial hormonal profiles, and genetic studies, ICSI, and sperm retrieval results. Results The incidence of chromosomal abnormalities was 9.59% (10.6% amongst Qatari patients, 9.04% amongst non-Qataris). About 63.6% of the sample had azoospermia, of whom 10.8% had chromosomal abnormalities. Roughly 36.4% of the sample had oligozoospermia, of whom 7.5% had chromosomal abnormalities. There were no differences between patients with chromosomal abnormalities and those with idiopathic infertility for demographic and infertility features; but for the hormonal profiles, patients with idiopathic infertility had significantly lower luteinising hormone and follicle-stimulating hormone values. For ICSI outcomes, patients with chromosomal abnormalities had a significantly lower total sperm retrieval rate (47.4% vs 65.8%), surgical sperm retrieval rate (41.2% vs 58.1%), and lower clinical pregnancy rate (16.7% vs 26.6%) when compared to the idiopathic infertility group. Conclusion The incidence of chromosomal abnormalities in Qatar as a cause of severe male infertility is within a similar range as their prevalence internationally.
Collapse
Affiliation(s)
- Mohamed M. Arafa
- Urology Department, Hamad Medical Corporation, Doha, Qatar
- Andrology Department, Cairo University Medical School, Cairo, Egypt
- Corresponding author at: Department of Urology, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Ahmad Majzoub
- Urology Department, Hamad Medical Corporation, Doha, Qatar
| | - Sami S. AlSaid
- Urology Department, Hamad Medical Corporation, Doha, Qatar
| | - Walid El Ansari
- Department of Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Abdulla Al Ansari
- Urology Department, Hamad Medical Corporation, Doha, Qatar
- Department of Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
48
|
Sudhakar DVS, Nizamuddin S, Manisha G, Devi JR, Gupta NJ, Chakravarthy BN, Deenadayal M, Singh L, Thangaraj K. NR5A1 mutations are not associated with male infertility in Indian men. Andrologia 2017; 50. [PMID: 29265478 DOI: 10.1111/and.12931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 01/10/2023] Open
Abstract
NR5A1 or steroidogenic factor 1 (SF1) is an autosomal gene, which encodes a protein that is a member of nuclear receptor family. NR5A1 regulates the transcription of numerous genes that are expressed in hypothalamic-pituitary-gonadal axis and adrenal cortex which in turn, coordinate the gonadal development, steroidogenesis and sex differentiation. Several mutations in NR5A1 have been reported to cause gonadal dysgenesis with adrenal insufficiency in individuals with 46,XY karyotype. However, studies in the past few years have shown that NR5A1 mutations can also contribute to primary ovarian insufficiency and impaired spermatogenesis. As there is no genetic study on NR5A1 in Indian infertile men, we have sequenced the entire coding region (exons 2-7) of NR5A1 in 502 infertile men of which, 414 were non-obstructive azoospermic and 88 severe oligozoospermic, along with 427 ethnically matched fertile controls. Interestingly, none of the mutations reported to be associated with male infertility were found in our study, except one polymorphism, rs1110061. However, it was not significantly different between infertile and fertile groups (p = .76). In addition, we have identified six intronic variants; but none of them was significantly associated with male infertility.
Collapse
Affiliation(s)
- D V S Sudhakar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - S Nizamuddin
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - G Manisha
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - J R Devi
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - N J Gupta
- Institute of Reproductive Medicine, Kolkata, India
| | | | - M Deenadayal
- Infertility Institute and Research Center, Secunderabad, India
| | - L Singh
- Genome Foundation, Hyderabad, India
| | - K Thangaraj
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| |
Collapse
|
49
|
Akinsal EC, Baydilli N, Bayramov R, Ekmekcioglu O. A Rare Cause of Male Infertility: 45,X/46,XY Mosaicism. Urol Int 2017; 101:481-485. [PMID: 29161714 DOI: 10.1159/000484615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/26/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To present the clinical, chromosomal, and endocrinological features of 8 infertile male cases with the 45,X/46,XY karyotype who were admitted to our infertility clinic. MATERIALS AND METHODS The records of cases who were admitted to our infertility clinic between 1999 and 2015 were investigated. Eight cases with 45,X/46,XY were detected. The clinical, endocrinological, and chromosomal assessments were analyzed. Each patient's height, weight, body mass index, testicular volume, endocrine hormone levels, follow-up period semen analysis, testicular biopsy reports, and karyotype analysis were evaluated retrospectively. RESULTS Some cases had a short stature, but often their phenotypes were normal. Seven of the cases had normal testosterone levels and all cases, except one, had elevated gonadotropin levels. All cases were azoospermic and testicular biopsy showed Sertoli cell-only syndrome. Peripheral blood karyotype revealed 45,X/46,XY mosaicism in all cases. Metaphase counts and percentages were different. CONCLUSIONS Individuals with 45,X/46,XY mosaicism that have a normal male phenotype form make up a rare subgroup of the 45,X/46,XY karyotype. These individuals usually present with infertility and were diagnosed based on the results of the karyotype analysis during azoo or severe oligospermia evaluation.
Collapse
Affiliation(s)
- Emre Can Akinsal
- Department of Urology, Medical Faculty, Erciyes University, Kayseri,
| | - Numan Baydilli
- Department of Urology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Ruslan Bayramov
- Department of Medical Genetics, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Oguz Ekmekcioglu
- Department of Urology, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
50
|
Nagamatsu G, Hayashi K. Stem cells, in vitro gametogenesis and male fertility. Reproduction 2017; 154:F79-F91. [PMID: 29133304 DOI: 10.1530/rep-17-0510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
Reconstitution in culture of biological processes, such as differentiation and organization, is a key challenge in regenerative medicine, and one in which stem cell technology plays a central role. Pluripotent stem cells and spermatogonial stem cells are useful materials for reconstitution of germ cell development in vitro, as they are capable of differentiating into gametes. Reconstitution of germ cell development, termed in vitro gametogenesis, will provide an experimental platform for a better understanding of germ cell development, as well as an alternative source of gametes for reproduction, with the potential to cure infertility. Since germ cells are the cells for 'the next generation', both the culture system and its products must be carefully evaluated. In this issue, we summarize the progress in in vitro gametogenesis, most of which has been made using mouse models, as well as the future challenges in this field.
Collapse
Affiliation(s)
- Go Nagamatsu
- Department of Stem Cell Biology and MedicineGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and MedicineGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|