1
|
Muniyandi P, Palaninathan V, Mizuki T, Mohamed MS, Hanajiri T, Maekawa T. Scaffold mediated delivery of dual miRNAs to transdifferentiate cardiac fibroblasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112323. [PMID: 34474874 DOI: 10.1016/j.msec.2021.112323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023]
Abstract
The standard scaffold-mediated delivery of drugs/biomolecules has been successful due to the unique attributes of scaffolds, specifically the electrospun polymeric scaffolds that mimic ECM are well suited for advanced regenerative applications. Cardiac tissue engineering includes the interpretation of cellular and molecular mechanisms concerning heart regeneration and identifying an efficient reprogramming strategy to overcome the limitation of delivery systems and enhance the reprogramming efficiency. This study is a step towards developing a functional scaffold through a parallel interpretation of electrospun PLLA scaffolds with two distinct topologies to achieve sustained delivery of two muscle-specific microRNAs (miR-1 and miR-133a) to directly reprogram the adult human cardiac fibroblasts into cardiomyocyte-like cells. Polyethyleneimine was used to form stable PEI-miRNA complexes through electrostatic interactions. These complexes were immobilized on the electrospun smooth and porous scaffolds, where a loading efficiency of ~96% for the fibronectin modified and ~38% for unmodified surfaces was observed, regardless of their surface topology. The in-vitro release experiment exhibited a biphasic release pattern of PEI-miRNA polyplexes from the scaffolds. These dual miRNA scaffold systems proved to be an excellent formulation since their combinatorial effect involving the topographic cues of electrospun fibers, and dual miRNAs helped control the cardiac fibroblast cell fate precisely.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan
| | - Vivekanandan Palaninathan
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan; Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan.
| | - Toru Mizuki
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan; Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan
| | - M Sheikh Mohamed
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan; Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan
| | - Tatsuro Hanajiri
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan; Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan; Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan
| |
Collapse
|
2
|
Kang MH, Hu J, Pratt RE, Hodgkinson CP, Asokan A, Dzau VJ. Optimizing delivery for efficient cardiac reprogramming. Biochem Biophys Res Commun 2020; 533:9-16. [PMID: 32917363 DOI: 10.1016/j.bbrc.2020.08.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Following heart injury, cardiomyocytes, are lost and are not regenerated. In their place, fibroblasts invade the dead tissue where they generate a scar, which reduces cardiac function. We and others have demonstrated that combinations of specific miRNAs (miR combo) or transcription factors (GMT), delivered by individual lenti-/retro-viruses in vivo, can convert fibroblasts into cardiomyocytes and improve cardiac function. However, the effects are relatively modest due to the low efficiency of delivery of miR combo or GMT. We hypothesized that efficiency would be improved by optimizing delivery. In the first instance, we developed a multicistronic system to express all four miRNAs of miR combo from a single construct. The order of each miRNA in the multicistronic construct gave rise to different levels of miRNA expression. A combination that resulted in equivalent expression levels of each of the four miRNAs of miR combo showed the highest reprogramming efficiency. Further efficiency can be achieved by directly targeting fibroblasts. Screening of several AAV serotypes indicated that AAV1 displayed tropism towards cardiac fibroblasts. Combining multicistronic expression with AAV1 delivery robustly reprogrammed cardiac fibroblasts into cardiomyocytes in vivo.
Collapse
Affiliation(s)
- Martin H Kang
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jiabiao Hu
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Aravind Asokan
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Dal-Pra S, Hodgkinson CP, Mirotsou M, Kirste I, Dzau VJ. Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo. Circ Res 2017; 120:1403-1413. [PMID: 28209718 DOI: 10.1161/circresaha.116.308741] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023]
Abstract
RATIONALE Direct reprogramming of cardiac fibroblasts to cardiomyocytes has recently emerged as a novel and promising approach to regenerate the injured myocardium. We have previously demonstrated the feasibility of this approach in vitro and in vivo using a combination of 4 microRNAs (miR-1, miR-133, miR-208, and miR-499) that we named miR combo. However, the mechanism of miR combo mediated direct cardiac reprogramming is currently unknown. OBJECTIVE Here, we investigated the possibility that miR combo initiated direct cardiac reprogramming through an epigenetic mechanism. METHODS AND RESULTS Using a quantitative polymerase chain reaction array, we found that histone methyltransferases and demethylases that regulate the trimethylation of H3K27 (H3K27me3), an epigenetic modification that marks transcriptional repression, were changed in miR combo-treated fibroblasts. Accordingly, global H3K27me3 levels were downregulated by miR combo treatment. In particular, the promoter region of cardiac transcription factors showed decreased H3K27me3 as revealed by chromatin immunoprecipitation coupled with quantitative polymerase chain reaction. Inhibition of H3K27 methyltransferases or of the PRC2 (Polycomb Repressive Complex 2) by pharmaceutical inhibition or siRNA reduced the levels of H3K27me3 and induced cardiogenic markers at the RNA and protein level, similarly to miR combo treatment. In contrast, knockdown of the H3K27 demethylases Kdm6A and Kdm6B restored the levels of H3K27me3 and blocked the induction of cardiac gene expression in miR combo-treated fibroblasts. CONCLUSIONS In summary, we demonstrated that removal of the repressive mark H3K27me3 is essential for the induction of cardiac reprogramming by miR combo. Our data not only highlight the importance of regulating the epigenetic landscape during cell fate conversion but also provide a framework to improve this technique.
Collapse
Affiliation(s)
- Sophie Dal-Pra
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Conrad P Hodgkinson
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Maria Mirotsou
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Imke Kirste
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
4
|
Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci Rep 2016; 6:38815. [PMID: 27941896 PMCID: PMC5150639 DOI: 10.1038/srep38815] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
We have recently shown that a combination of microRNAs, miR combo, can directly reprogram cardiac fibroblasts into functional cardiomyocytes in vitro and in vivo. Reprogramming of cardiac fibroblasts by miR combo in vivo is associated with improved cardiac function following myocardial infarction. However, the efficiency of direct reprogramming in vitro is relatively modest and new strategies beyond the traditional two-dimensional (2D) culture should be identified to improve reprogramming process. Here, we report that a tissue-engineered three-dimensional (3D) hydrogel environment enhanced miR combo reprogramming of neonatal cardiac and tail-tip fibroblasts. This was associated with significantly increased MMPs expression in 3D vs. 2D cultured cells, while pharmacological inhibition of MMPs blocked the effect of the 3D culture on enhanced miR combo mediated reprogramming. We conclude that 3D tissue-engineered environment can enhance the direct reprogramming of fibroblasts to cardiomyocytes via a MMP-dependent mechanism.
Collapse
|
5
|
Abstract
The human heart has a limited capacity to regenerate lost or damaged cardiomyocytes after cardiac insult. Instead, myocardial injury is characterized by extensive cardiac remodeling by fibroblasts, resulting in the eventual deterioration of cardiac structure and function. Cardiac function would be improved if these fibroblasts could be converted into cardiomyocytes. MicroRNAs (miRNAs), small noncoding RNAs that promote mRNA degradation and inhibit mRNA translation, have been shown to be important in cardiac development. Using this information, various researchers have used miRNAs to promote the formation of cardiomyocytes through several approaches. Several miRNAs acting in combination promote the direct conversion of cardiac fibroblasts into cardiomyocytes. Moreover, several miRNAs have been identified that aid the formation of inducible pluripotent stem cells and miRNAs also induce these cells to adopt a cardiac fate. MiRNAs have also been implicated in resident cardiac progenitor cell differentiation. In this review, we discuss the current literature as it pertains to these processes, as well as discussing the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Martin H Kang
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sophie Dal-Pra
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Maria Mirotsou
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|