1
|
Tao H, Zhu P, Xia W, Chu M, Chen K, Wang Q, Gu Y, Lu X, Bai J, Geng D. The Emerging Role of the Mitochondrial Respiratory Chain in Skeletal Aging. Aging Dis 2024; 15:1784-1812. [PMID: 37815897 PMCID: PMC11272194 DOI: 10.14336/ad.2023.0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| |
Collapse
|
2
|
|
3
|
Du H, Yan SS. Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell Biol 2010; 42:560-72. [PMID: 20067840 DOI: 10.1016/j.biocel.2010.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 01/04/2023]
Abstract
Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Heng Du
- Department of Surgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
4
|
Vasconcellos LFR, Leite ACC, Cavalcanti JLS, Moreira DM, Feijó D, Souza CFMD. Síndrome psicótica evoluindo com demência como manifestação clinica de deleção do DNA mitocondrial. ARQUIVOS DE NEURO-PSIQUIATRIA 2007; 65:114-7. [PMID: 17420839 DOI: 10.1590/s0004-282x2007000100023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 11/11/2006] [Indexed: 11/22/2022]
Abstract
As manifestações das doenças mitocondriais são variadas, acometendo, mais freqüentemente, órgãos com alto metabolismo aeróbico em que são mais abundantes, como, por exemplo, o sistema nervoso. O início dos sintomas em geral é observado na infância havendo relatos de início na idade adulta. Apresentamos caso atípico de doença mitocondrial associada à deleção do DNA mitocondrial em um homem de 39 anos com sintomas psiquiátricos configuraram quadro clínico inicial e somente 12 anos após o início dos sintomas surgiram alterações neurológicas. O diagnóstico da doença mitocondrial foi confirmado por biópsia de músculo sendo documentada deleção do DNA mitocondrial.
Collapse
Affiliation(s)
- Luiz Felipe Rocha Vasconcellos
- Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rua conde de Bonfim 211/702, CEP 20520-050 Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Progressive myoclonic epilepsies (PMEs) are a group of rare disorders characterized by the occurrence of seizures, myoclonus, and progressive neurological dysfunction. This article discusses epidemiology, genetics, pathology, clinical manifestations, EEG characteristics, methods of diagnosis and treatment of the most common causes of PME, including Unverricht-Lundborg Disease (Baltic Myoclonus), MERRF, neuronal ceroid lipofuscinosis, dentatorubropallidoluysan atrophy, Gaucher disease, Lafora disease, and sialidosis. The aim of this paper is to provide clinicians with useful clinical information in order to facilitate the diagnosis and treatment of these rare diseases.
Collapse
Affiliation(s)
- Mary L Zupanc
- Department of Neurology and Pediatrics, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
6
|
Sim KG, Hammond J, Wilcken B. Strategies for the diagnosis of mitochondrial fatty acid beta-oxidation disorders. Clin Chim Acta 2002; 323:37-58. [PMID: 12135806 DOI: 10.1016/s0009-8981(02)00182-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial fatty acid beta-oxidation disorders (FAOD) are a group of clinically and biochemically heterogeneous inherited metabolic defects. The spectrum of phenotypes has expanded from hepatic encephalopathy to encompass myopathy, cardiomyopathy, peripheral neuropathy, sudden death and pregnancy complicated by fetal FAOD. Pre-symptomatic diagnosis is important to prevent morbidity and this is now achievable through newborn screening using tandem mass spectrometry (MS/MS). Moreover, most of the diagnosed defects are treatable and the prognosis is generally favourable. This article reviews the features of FAOD, critically evaluates methods of investigation including metabolite analyses in body fluids, in vitro oxidation rates and acylcarnitine profiling studies, enzymatic and mutational tests, and discusses genotype-phenotype correlation, treatment and monitoring options. Based on this knowledge, strategies for the biochemical investigation and differential diagnosis of patients presenting clinically, asymptomatic neonates detected by newborn screening, infants born after complications during late pregnancy, and cases of sudden death with suspected FAOD are presented. Laboratory investigation commonly begins with a search for diagnostic metabolites in physiological fluids, followed by in vitro functional studies if the initial findings are inconclusive, and confirmation by enzymology and molecular analyses. Occasionally a stress test in vivo may be required. At other times there may be no firm diagnosis achieved.
Collapse
Affiliation(s)
- Keow G Sim
- New South Wales Biochemical Genetics Service, The Children's Hospital at Westmead, Sydney, Australia. .au
| | | | | |
Collapse
|
7
|
Abstract
Mitochondrial dysfunction should be considered in the differential diagnosis of any progressive multisystem disorder. The diagnosis is most challenging when only one symptom is present. In contrast, the diagnosis is easier to consider when two or more seemingly unrelated symptoms are present, involving more than one organ system. It is important to consider the diagnosis of a mitochondrial disorder when dealing with an unexplained association of symptoms, with an early onset and progressive course involving seemingly unrelated organs. The investigation can be relatively straightforward if a person has a recognizable phenotype and if it is possible to identify a known pathogenic mtDNA mutation. The difficulty arises when no known mtDNA defect can be found or when the clinical abnormalities are complex and not easily matched to those of more common mitochondrial disorders. In summary: A full mitochondrial evaluation often is warranted in children with a complex neurologic picture or a single neurologic symptom and other system involvement. When the presentation is classic for a maternally inherited mitochondrial syndrome, such as MELAS, MERRF, or Leber's hereditary optic neuropathy, appropriate mtDNA studies should be obtained first. When the clinical picture is classic for a nuclear DNA inherited syndrome and the gene or linkage is known, such as MNGIE, the clinician should proceed with genetic studies. When the clinical picture is nonspecific but highly suggestive of a mitochondrial disorder, the clinician should start with plasma or CSF lactic acid, ketone bodies, plasma acylcarnitines, and urinary organic acids. If these studies are abnormal, the clinician should proceed with muscle biopsy and assessment of the respiratory chain enzymes. Normal plasma or CSF lactic acid does not rule out a mitochondrial disorder.
Collapse
Affiliation(s)
- Lynette Gillis
- Section of Biochemical Genetics, Department of Human Genetics and Molecular Biology, Division of Gastroenterology and Nutrition, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|