1
|
Pereira AC, Alakbarzade V, Shribman S, Crossingham G, Moullaali T, Werring D. Stroke as a career option for neurologists. Pract Neurol 2025; 25:45-50. [PMID: 38908861 DOI: 10.1136/pn-2024-004111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Stroke is one of the most common acute neurological disorders and a leading cause of disability worldwide. Evidence-based treatments over the last two decades have driven a revolution in the clinical management and design of stroke services. We need a highly skilled, multidisciplinary workforce that includes neurologists as core members to deliver modern stroke care. In the UK, the dedicated subspecialty training programme for stroke medicine has recently been integrated into the neurology curriculum. All neurologists will be trained to contribute to each aspect of the stroke care pathway. We discuss how training in stroke medicine is evolving for neurologists and the opportunities and challenges around practising stroke medicine in the UK and beyond.
Collapse
Affiliation(s)
- Anthony C Pereira
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Vafa Alakbarzade
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Samuel Shribman
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Ginette Crossingham
- Department of Neurology, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Tom Moullaali
- Centre for Clinical Brain Sciences, University of Edinburgh Division of Medical and Radiological Sciences, Edinburgh, UK
| | - David Werring
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
2
|
Krothapalli N, Hasan D, Lusk J, Poli S, Hussain S, de Havenon A, Grotta J, Grory BM. Mobile stroke units: Beyond thrombolysis. J Neurol Sci 2024; 463:123123. [PMID: 38981417 DOI: 10.1016/j.jns.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
In the last decade, mobile stroke units (MSUs) have shown the potential to transform prehospital stroke care, marking a paradigm shift in delivering ultra-rapid thrombolysis and streamlining triage processes. These units bring acute stroke care directly to patients, significantly shortening treatment times. This review outlines the rationale for MSU care and discusses the potential applications beyond the original purpose of delivering thrombolysis, including large vessel occlusion detection, intracerebral hemorrhage management, and innovative forms of prehospital research.
Collapse
Affiliation(s)
- Neeharika Krothapalli
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - David Hasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA; Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Jay Lusk
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Internal Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Sven Poli
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Shazam Hussain
- Department of Neurology, Cleveland Clinic Health Foundation, Cleveland, OH, USA
| | - Adam de Havenon
- Department of Neurology, Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, USA
| | - James Grotta
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Brian Mac Grory
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Roeder HJ, Leira EC. The Role of the Vascular Neurologist in Optimizing Stroke Care. Neurol Clin 2024; 42:739-752. [PMID: 38937039 DOI: 10.1016/j.ncl.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The article summarizes the training pathways and vocational opportunities within the field of vascular neurology. It highlights the groundbreaking clinical trials that transformed acute stroke care and the resultant increased demand for readily available vascular neurology expertise. The article emphasizes the need to train a larger number of diverse physicians in the subspecialty and the role of vascular neurologists in improving outcomes across demographic and geographic lines.
Collapse
Affiliation(s)
- Hannah J Roeder
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA
| | - Enrique C Leira
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA; Department of Epidemiology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| |
Collapse
|
4
|
Geisler F, Haacke L, Lorenz M, Schwabauer E, Wendt M, Bernhardt L, Dashti E, Freitag E, Kunz A, Hofmann-Shen C, Zuber M, Waldschmidt C, Kandil FI, Kappert K, Dang-Heine C, Lorenz-Meyer I, Audebert HJ, Weber JE. Prospective collection of blood plasma samples to identify potential biomarkers for the prehospital stroke diagnosis (ProGrEss-Bio): study protocol for a multicenter prospective observational study. Front Neurol 2023; 14:1201130. [PMID: 37483444 PMCID: PMC10359480 DOI: 10.3389/fneur.2023.1201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Intravenous thrombolysis (IVT) and mechanical thrombectomy (MT) are well-established, evidence-based, time-critical therapies that reduce morbidity and mortality in acute ischemic stroke (AIS) patients. The exclusion of intracerebral hemorrhage (ICH) is mandatory and has been performed by cerebral imaging to date. Mobile stroke units (MSUs) have been shown to improve functional outcomes by bringing cerebral imaging and IVT directly to the patient, but they have limited coverage. Blood biomarkers clearly distinguishing between AIS, ICH, and stroke mimics (SM) could provide an alternative to cerebral imaging if concentration changes are detectable in the hyperacute phase after stroke with high diagnostic accuracy. In this study, we will take blood samples in a prehospital setting to evaluate potential biomarkers. The study was registered in the German Clinical Trials Register (https://drks.de/search/de) with the identifier DRKS00023063. Methods and analysis We plan a prospective, observational study involving 300 patients with suspected stroke and symptom onset of ≤4.5 h before the collection of biomarkers. Study participants will be recruited from three sites in Berlin, Germany during MSU deployments. The focus of the study is the collection of blood samples from participants at the prehospital scene and from participants with AIS or ICH at a second-time point. All samples will be analyzed using targeted and untargeted analytical approaches. Study-related information about participants, including medical information and discharge diagnoses from the subsequent treating hospital, will be collected and documented in an electronic case report form (eCRF). Discussion This study will evaluate whether a single blood biomarker or a combination of biomarkers can distinguish patients with AIS and ICH from patients with stroke and SM in the early phase after symptom onset in the prehospital setting. In addition, the kinetics of blood biomarkers in AIS and ICH patients will be investigated. Our goal is to evaluate new ways to reliably diagnose stroke in the prehospital setting and thus accelerate the application of evidence-based therapies to stroke patients.
Collapse
Affiliation(s)
- Frederik Geisler
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lisa Haacke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maren Lorenz
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Schwabauer
- Department of Neurology, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Matthias Wendt
- Department of Neurology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Lydia Bernhardt
- Department of Neurology, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Eman Dashti
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erik Freitag
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Kunz
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Hofmann-Shen
- Kliniken Beelitz, Teaching Hospital of Brandenburg Medical School Theodor Fontane, Beelitz-Heilstätten, Germany
| | - Martina Zuber
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Farid I. Kandil
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai Kappert
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chantip Dang-Heine
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Irina Lorenz-Meyer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heinrich J. Audebert
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joachim E. Weber
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
5
|
Sepponen R, Saviluoto A, Jäntti H, Harve-Rytsälä H, Lääperi M, Nurmi J. Validation of Score to Detect Intracranial Lesions in Unconscious Patients in Prehospital Setting. J Stroke Cerebrovasc Dis 2022; 31:106319. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022] Open
|
6
|
Zeng L, Li G, Zhang M, Zhu R, Chen J, Li M, Yin S, Bai Z, Zhuang W, Sun J. A noninvasive and comprehensive method for continuous assessment of cerebral blood flow pulsation based on magnetic induction phase shift. PeerJ 2022; 10:e13002. [PMID: 35228911 PMCID: PMC8881914 DOI: 10.7717/peerj.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 01/11/2023] Open
Abstract
Cerebral blood flow (CBF) monitoring is of great significance for treating and preventing strokes. However, there has not been a fully accepted method targeting continuous assessment in clinical practice. In this work, we built a noninvasive continuous assessment system for cerebral blood flow pulsation (CBFP) that is based on magnetic induction phase shift (MIPS) technology and designed a physical model of the middle cerebral artery (MCA). Physical experiments were carried out through different simulations of CBF states. Four healthy volunteers were enrolled to perform the MIPS and ECG synchronously monitoring trials. Then, the components of MIPS related to the blood supply level and CBFP were investigated by signal analysis in time and frequency domain, wavelet decomposition and band-pass filtering. The results show that the time-domain baseline of MIPS increases with blood supply level. A pulse signal was identified in the spectrum (0.2-2 Hz in 200-2,000 ml/h groups, respectively) of MIPS when the simulated blood flow rate was not zero. The pulsation frequency with different simulated blood flow rates is the same as the squeezing frequency of the feeding pump. Similar to pulse waves, the MIPS signals on four healthy volunteers all had periodic change trends with obvious peaks and valleys. Its frequency is close to that of the ECG signal and there is a certain time delay between them. These results indicate that the CBFP component can effectively be extracted from MIPS, through which different blood supply levels can be distinguished. This method has the potential to become a new solution for non-invasive and comprehensive monitoring of CBFP.
Collapse
Affiliation(s)
- Lingxi Zeng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Maoting Zhang
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Rui Zhu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jingbo Chen
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Mingyan Li
- College of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Shengtong Yin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zelin Bai
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Wei Zhuang
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Jian Sun
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Bringing CT Scanners to the Skies: Design of a CT Scanner for an Air Mobile Stroke Unit. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stroke is the second most common cause of death and remains a persistent health challenge globally. Due to its highly time-sensitive nature, earlier stroke treatments should be enforced for improved patient outcome. The mobile stroke unit (MSU) was conceptualized and implemented to deliver the diagnosis and treatment to a stroke patient in the ultra-early time window (<1 h) in the pre-hospital setting and has shown to be clinically effective. However, due to geographical challenges, most rural communities are still unable to receive timely stroke intervention, as access to specialized stroke facilities for optimal stroke treatment poses a challenge. Therefore, the aircraft counterpart (Air-MSU) of the conventional road MSU offers a plausible solution to this shortcoming by expanding the catchment area for regional locations in Australia. The implementation of Air-MSU is currently hindered by several technical limitations, where current commercially available CT scanners are still oversized and too heavy to be integrated into a conventional helicopter emergency medical service (HEMS). In collaboration with the Australian Stroke Alliance and Melbourne Brain Centre, this article aims to explore the possibilities and methodologies in reducing the weight and, effectively, the size of an existing CT scanner, such that it can be retrofitted into the proposed search and rescue helicopter—Agusta Westland AW189. The result will be Australia’s first-ever customized CT scanner structure designed to fit in a search-and-rescue helicopter used for Air-MSU.
Collapse
|
8
|
Aroor SR, Asif KS, Potter-Vig J, Sharma A, Menon BK, Inoa V, Zevallos CB, Romano JG, Ortega-Gutierrez S, Goldstein LB, Yavagal DR. Mechanical Thrombectomy Access for All? Challenges in Increasing Endovascular Treatment for Acute Ischemic Stroke in the United States. J Stroke 2022; 24:41-48. [PMID: 35135058 PMCID: PMC8829477 DOI: 10.5853/jos.2021.03909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 11/11/2022] Open
Abstract
Mechanical thrombectomy (MT) is the most effective treatment for selected patients with an acute ischemic stroke due to emergent large vessel occlusions (LVOs). There is an urgent need to identify and address challenges in access to MT to maximize the numbers of patients who can benefit from this treatment. Barriers in access to MT include delays in evaluation and accurate diagnosis of LVO leading to inappropriate triage, logistical delays related to availability of facilities and trained interventionalists, and financial hurdles that affect treatment reimbursement. Collection of regional data related to these barriers is critical to better understand current access gaps and a measurable access score to thrombectomy could be useful to plan local public health intervention.
Collapse
Affiliation(s)
- Sushanth Rao Aroor
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Kaiz S. Asif
- Department of Neurosurgery, University of Illinois and AMITA Health, Chicago, IL, USA
| | | | - Arun Sharma
- University of Miami, Herbert Business School, Miami, FL, USA
| | - Bijoy K. Menon
- Hotchkiss Brain Institute, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Violiza Inoa
- Semmes Murphey Clinic, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cynthia B. Zevallos
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Jose G. Romano
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Larry B. Goldstein
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Dileep R. Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Correspondence: Dileep R. Yavagal Departments of Neurology and Neurosurgery, University of Miami Miller School of Medicine, 1600 NW 10th Ave 1140, Miami, FL 33136, USA Tel: +1-305-355-1103 E-mail:
| |
Collapse
|
9
|
Choi J, Petrone A, Adcock A. A Case for the Non-Neurologist Telestroke Provider. Front Neurol 2021; 12:651519. [PMID: 34421782 PMCID: PMC8377720 DOI: 10.3389/fneur.2021.651519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Telestroke networks have effectively increased the number of ischemic stroke patients who have access to acute stroke therapy. However, the availability of a dedicated group of stroke subspecialists is not always feasible. We hypothesize that rates of tPA recommendation, sensitivity of final diagnosis, and post-tPA hemorrhagic complications do not differ significantly between neurologists and an emergency-medicine physician during telestroke consultations. Methods: Retrospective review of all telestroke consults performed at a comprehensive stroke center over 1 year. Statistical analysis: Chi squared test. Results: Three hundred and three consults were performed among 6 spoke sites. 16% (48/303) were completed by the emergency medicine physician; 25% (76/303) were performed by non-stroke-trained neurologists, and 59% (179/303) were completed by a board-certified Vascular Neurologist. Overall rate of tPA recommendation was 40% (104/255), 38% (18/48), 41% (73/179), and 41% (31/76) among the all neurology-trained, emergency medicine-trained, stroke neurology-trained and other neurology- trained provider groups, respectively (p = 0.427). Sensitivity of final stroke diagnosis was 77% (14/18) and 72% (75/104) in the emergency-medicine trained and neurology-trained provider groups (p = 0.777) No symptomatic hemorrhagic complications following the administration of tPA via telestroke consultation occurred in any group over this time period. One asymptomatic intracerebral hemorrhage was observed (0.96% or 1/104) in the neurology-trained provider group. Discussion/Conclusion: Our results did not illustrate any statistically significant difference between care provided by an emergency medicine-trained physician and neurologists during telestroke consultation. While our study is limited by its relatively low numbers, it suggests that identifying a non-neurologist provider who has requisite clinical experience with acute stroke patients can safely and appropriately provide telestroke consultation. The lack of formerly trained neurologists, therefore, may not need to serve as an impediment to building an effective telestroke network. Future efforts should be focused on illuminating all strategies that facilitate sustainable telestroke implementation.
Collapse
Affiliation(s)
- Justin Choi
- School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Ashley Petrone
- Department of Neurology, West Virginia University Hospitals, Morgantown, WV, United States
| | - Amelia Adcock
- Department of Neurology, West Virginia University Hospitals, Morgantown, WV, United States.,Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
10
|
Chen J, Li G, Liang H, Zhao S, Sun J, Qin M. An amplitude-based characteristic parameter extraction algorithm for cerebral edema detection based on electromagnetic induction. Biomed Eng Online 2021; 20:74. [PMID: 34344370 PMCID: PMC8335876 DOI: 10.1186/s12938-021-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral edema is a common condition secondary to any type of neurological injury. The early diagnosis and monitoring of cerebral edema is of great importance to improve the prognosis. In this article, a flexible conformal electromagnetic two-coil sensor was employed as the electromagnetic induction sensor, associated with a vector network analyzer (VNA) for signal generation and receiving. Measurement of amplitude data over the frequency range of 1–100 MHz is conducted to evaluate the changes in cerebral edema. We proposed an Amplitude-based Characteristic Parameter Extraction (Ab-CPE) algorithm for multi-frequency characteristic analysis over the frequency range of 1–100 MHz and investigated its performance in electromagnetic induction-based cerebral edema detection and distinction of its acute/chronic phase. Fourteen rabbits were enrolled to establish cerebral edema model and the 24 h real-time monitoring experiments were carried out for algorithm verification. Results The proposed Ab-CPE algorithm was able to detect cerebral edema with a sensitivity of 94.1% and specificity of 95.4%. Also, in the early stage, it can detect cerebral edema with a sensitivity of 85.0% and specificity of 87.5%. Moreover, the Ab-CPE algorithm was able to distinguish between acute and chronic phase of cerebral edema with a sensitivity of 85.0% and specificity of 91.0%. Conclusion The proposed Ab-CPE algorithm is suitable for multi-frequency characteristic analysis. Combined with this algorithm, the electromagnetic induction method has an excellent performance on the detection and monitoring of cerebral edema.
Collapse
Affiliation(s)
- Jingbo Chen
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.
| | - Huayou Liang
- China Aerodynamics Research and Development Center Low Speed Aerodynamic Institute, Mianyang, Sichuan, China
| | - Shuanglin Zhao
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Sun
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingxin Qin
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
11
|
Chowdhury SZ, Baskar PS, Bhaskar S. Effect of prehospital workflow optimization on treatment delays and clinical outcomes in acute ischemic stroke: A systematic review and meta-analysis. Acad Emerg Med 2021; 28:781-801. [PMID: 33387368 DOI: 10.1111/acem.14204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prehospital phase is critical in ensuring that stroke treatment is delivered quickly and is a major source of time delay. This study sought to identify and examine prehospital stroke workflow optimizations (PSWOs) and their impact on improving health systems, reperfusion rates, treatment delays, and clinical outcomes. METHODS The authors conducted a systematic literature review and meta-analysis by extracting data from several research databases (PubMed, Cochrane, Medline, and Embase) published since 2005. We used appropriate key search terms to identify clinical studies concerning prehospital workflow optimization, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS The authors identified 27 articles that looked at the impact of prehospital workflow optimizations on time and treatment parameters; 26 were included in the meta-analysis. The PSWO were subgrouped into three categories: improved intravenous thrombolysis (IVT) triage, large-vessel occlusion (LVO) bypass, and mobile stroke unit (MSU). The salient findings are as follows: improved IVT triage led to significantly improved rates of IVT (relative risk [RR] = 1.80, 95% confidence interval [CI] = 1.18 to 2.75); however, MSU did not (RR = 1.22, 95% CI = 0.98 to 1.52). Improved IVT triage (standard mean difference [SMD] = -0.82, 95% CI = -1.32 to -0.32), LVO bypass (SMD = -0.80, 95% CI = -1.13 to -0.47), and MSU (SMD = -0.87, 95% CI = -1.57 to -0.17) were found to significantly reduce door-to-needle time for IVT. MSU was found to significantly reduce call-to-needle (SMD = -1.41, 95% CI = -1.94 to -0.88) and onset-to-needle (SMD = -1.15, 95% CI = -1.74 to -0.56) times for IVT. MSU additionally demonstrated significant reduction in door-to-perfusion (SMD = -0.72, 95% CI = -1.32 to -0.12) as well as call-to-perfusion (SMD = -0.73, 95% CI = -1.08 to -0.38) times for EVT. Finally, PSWO did not demonstrate significant improvements in rates of good functional outcome (RR = 1.04, 95% CI = 0.97 to 1.12) or mortality at 90 days (RR = 1.00, 95% CI = 0.76 to 1.31). CONCLUSIONS This systematic review and meta-analysis found that PSWO significantly improves several time metrics related to stroke treatment leading to improvement in IVT reperfusion rates. Thus, the implementation of these measures in stroke networks is a promising avenue to improve an often-neglected aspect of the stroke response. However, the limited available data suggest functional outcomes and mortality are not significantly improved by PSWO; hence, further studies and improvement strategies vis-à-vis PSWOs are warranted.
Collapse
Affiliation(s)
- Seemub Zaman Chowdhury
- Neurovascular Imaging Laboratory Ingham Institute for Applied Medical ResearchClinical Sciences Stream Sydney New South Wales Australia
- University of New South Wales (UNSWSouth Western Sydney Clinical SchoolUNSW Medicine Sydney New South Wales Australia
| | - Prithvi Santana Baskar
- Neurovascular Imaging Laboratory Ingham Institute for Applied Medical ResearchClinical Sciences Stream Sydney New South Wales Australia
- University of New South Wales (UNSWSouth Western Sydney Clinical SchoolUNSW Medicine Sydney New South Wales Australia
| | - Sonu Bhaskar
- Neurovascular Imaging Laboratory Ingham Institute for Applied Medical ResearchClinical Sciences Stream Sydney New South Wales Australia
- University of New South Wales (UNSWSouth Western Sydney Clinical SchoolUNSW Medicine Sydney New South Wales Australia
- Department of Neurology & Neurophysiology Liverpool Hospital & South West Sydney Local Health District (SWSLHD Sydney New South Wales Australia
- Stroke & Neurology Research Group Ingham Institute for Applied Medical Research Sydney New South Wales Australia
- NSW Brain Clot BankNSW Health Statewide Biobank and NSW Health Pathology Sydney New South Wales Australia
| |
Collapse
|
12
|
Sammut-Powell C, Ashton C, Paroutoglou K, Parry-Jones A. Differences in Characteristics and Ambulance Pathway Adherence Between Strokes and Mimics Presenting to a Large UK Centralized Hyper Acute Stroke Unit (HASU). Front Neurol 2021; 12:646015. [PMID: 34040576 PMCID: PMC8143189 DOI: 10.3389/fneur.2021.646015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background: In Greater Manchester (GM), prehospital clinicians use the Face Arm Speech Test (FAST) to identify suspected stroke patients alongside pathway exclusions. Within the centralized stroke service, patients with a suspected stroke are taken directly to a Hyper Acute Stroke Unit (HASU), often bypassing their local emergency department (ED). However, many of these patients are experiencing an illness that looks like a stroke but is not a stroke. The data collected in the prehospital setting is rarely used in research yet could give valuable insights into the performance of the pathway. Aim: To evaluate the presenting symptoms and final diagnoses of prehospital suspected strokes and to evaluate the adherence of prehospital stroke pathway exclusions. Methods: We analyzed data from all patients brought in by ambulance and admitted on the stroke pathway between 01/09/15 and 28/02/17. Patient demographics and all data recorded in the prehospital setting were evaluated to identify differences in stroke, TIA, and mimic patients. Pathway adherence was assessed according to whether the patient was local or out-of-area (OOA) and bypassed their local ED. Results: A total of 4,216 suspected strokes were identified: 2,213 (52.5%) had a final diagnosis of stroke, 492 (11.7%) experienced a transient ischemic attack (TIA), and 1,511 (35.8%) were stroke mimics. There were 714 (16.9%) patients that were identified as having at least one pathway exclusion or were FAST negative, of which 270 (37.8%) experienced a stroke. The proportion of strokes was significantly lower in those with a pathway exclusion (41.8 vs. 53.5%; p < 0.001) and the proportion of breaches tended to be comparable or higher in the local population. Discussion: There are high volumes of stroke mimics but identified differences indicate there is an opportunity to better utilize prehospital data. Ambulance clinicians were able to correctly overrule FAST negative results and the volume of these suggest that FAST alone may be too restrictive.
Collapse
Affiliation(s)
- Camilla Sammut-Powell
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Christopher Ashton
- Salford Royal NHS Foundation Trust, Greater Manchester Integrated Stroke Delivery Network, Salford, United Kingdom
| | | | - Adrian Parry-Jones
- Salford Royal NHS Foundation Trust, Salford, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, United Kingdom.,Division of Cardiovascular Science, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Chen J, Lin X, Huang R, Luo M, Cai Y, Zou W. Effect of thrombolysis in a mobile stroke unit versus in hospital for patients with ischemic stroke: A protocol for systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e23676. [PMID: 33429734 PMCID: PMC7793433 DOI: 10.1097/md.0000000000023676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Ischemic stroke caused by arterial occlusion is the cause of most strokes. The focus of treatment is rapid reperfusion through intravenous thrombolysis and intravascular thrombectomy. Two acute stroke management including prehospital thrombolysis and in hospital have been widely used clinically to treat ischemic stroke with satisfied efficacy. However, there is no systematic review comparing the effectiveness of these 2 therapies. The aim of this study is to compare the effect of prehospital thrombolysis versus in hospital for patients with ischemic stroke. METHODS AND ANALYSIS The following electronic databases will be searched: Web of Science, PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), China Biology Medicine disc (CBM), Wanfang Database, and Chinese Scientific Journal Database.The randomized controlled trials of prehospital thrombolysis versus in hospital for ischemic stroke will be searched in the databases from their inception to December 2020 by 2 researchers independently. Onset to therapy (OTT) duration and National Institute Health Stroke Scale (NIHSS) scores will be assessed as the primary outcomes; safety assessment including intracerebral hemorrhage (ICH) and mortality will be assessed as the secondary outcomes. The Review Manager 5.3 will be used for meta-analysis and the evidence level will be assessed by using the method for Grading of Recommendations Assessment, Development and evaluation Continuous outcomes will be presented as the weighted mean difference or standardized mean difference with 95% confidence interval (CI), whereas dichotomous data will be expressed as relative risk with 95% CI. If heterogeneity existed (P < .05), the random effect model was used. Otherwise, we will use the fixed effect model for calculation. ETHICS AND DISSEMINATION Ethical approval is not required because no primary data are collected. This review will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42020200708.
Collapse
Affiliation(s)
- Jieyun Chen
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian
| | - Xiaoying Lin
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian
| | - Risheng Huang
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian
| | - Minyuan Luo
- J. N. Medical Laboratory, Big Data Research Center, University of Electronic Science and Technology of China, Chengdu
| | - Yali Cai
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian
| | - Wenxiao Zou
- Department of Neurology, Chongqing Armed Corps Police Hospital, Chongqing, China
| |
Collapse
|
14
|
Schneider BC. Advanced prehospital stroke care: Mobile stroke treatment unit. Nurs Manag (Harrow) 2021; 52:7-9. [PMID: 33394911 DOI: 10.1097/01.numa.0000724908.52219.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- B C Schneider
- B.C. Schneider is the patient care director for the neuroscience crucial care nursing department at NewYork-Presbyterian Hospital/Weill Cornell Medical Center in New York, N.Y
| |
Collapse
|
15
|
Audiovisual Consults by Paramedics to Reduce Hospital Transport After Low-Urgency Calls: Randomized Controlled Trial. Prehosp Disaster Med 2020; 35:656-662. [PMID: 32985403 DOI: 10.1017/s1049023x2000117x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The effect and subjective perception of audiovisual consults (AVCs) by paramedics with a distant physician in prehospital emergency care (PHEC) remain unexplained, especially in low-urgency calls. OBJECTIVES The primary objective of the study was to evaluate the effect of AVCs by paramedics with a base physician on the rate of patients treated on site without the need of hospital transfer. The co-primary safety outcome was the frequency of repeated ambulance trips within 48 hours to the same patient. Secondary objective was the qualitative analysis of perception of the AVCs. METHODS During a six-week period, the dispatching center of Karlovy Vary Emergency Medical Service (EMS) randomized low-urgency events from a rural area (n = 791) to receive either a mandatory phone-call consult (PHONE), AVC (VIDEO), or performed by the paramedic crew in a routine manner, when phone-call consultation is for paramedic crew optional (CONTROL). Secondarily, the qualitative analysis of subjective perception of AVCs compared to consultation over the phone by the paramedic and consulting physician was performed. RESULTS Per-protocol analysis (PPA) was performed (CONTROL, n = 258; PHONE, n = 193; and VIDEO, n = 192) in addition to the intention-to-treat (ITT) analysis. Patients (PPA) in both mandatory consulted groups were twice as likely to be treated and left on site compared to the CONTROL (PHONE: OR = 2.07; 95% CI, 1.19 to 3.58; P = 0.01 or VIDEO: OR = 2.01; 95% CI, 1.15 to 3.49; P = .01). Repeated trips to patients treated and left on site in 48 hours occurred in three (8.6%) of 35 cases in the PHONE group and in eight (23.5%) of 34 cases in the VIDEO group. CONCLUSIONS The AVCs of the emergency physician by paramedics was not superior to the mandatory conventional phone call in increasing the proportion of patients treated and left at home after a low-urgency call. The AVC improved the subjective feelings of safety by physicians, but not the satisfaction of patients or paramedics, and may lead to an increased need of repeated trips.
Collapse
|
16
|
Bhat SS, Fernandes TT, Poojar P, Silva Ferreira M, Rao PC, Hanumantharaju MC, Ogbole G, Nunes RG, Geethanath S. Low‐Field MRI of Stroke: Challenges and Opportunities. J Magn Reson Imaging 2020; 54:372-390. [DOI: 10.1002/jmri.27324] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Seema S. Bhat
- Medical Imaging Research Centre Dayananda Sagar College of Engineering Bangalore India
| | - Tiago T. Fernandes
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico Universidade de Lisboa Lisbon Portugal
| | - Pavan Poojar
- Medical Imaging Research Centre Dayananda Sagar College of Engineering Bangalore India
- Columbia University Magnetic Resonance Research Center New York New York USA
| | - Marta Silva Ferreira
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico Universidade de Lisboa Lisbon Portugal
| | - Padma Chennagiri Rao
- Medical Imaging Research Centre Dayananda Sagar College of Engineering Bangalore India
| | | | - Godwin Ogbole
- Department of Radiology, College of Medicine University of Ibadan Ibadan Nigeria
| | - Rita G. Nunes
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico Universidade de Lisboa Lisbon Portugal
| | - Sairam Geethanath
- Medical Imaging Research Centre Dayananda Sagar College of Engineering Bangalore India
- Columbia University Magnetic Resonance Research Center New York New York USA
| |
Collapse
|
17
|
Wadhwa A, Joundi RA, Menon B. Clinical considerations and assessment of risk factors when choosing endovascular thrombectomy for acute stroke. Expert Rev Cardiovasc Ther 2020; 18:541-556. [PMID: 32686967 DOI: 10.1080/14779072.2020.1798229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The advent of endovascular thrombectomy (EVT) has been a game changer for the management of acute ischemic stroke due to large vessel occlusion. However, the selection of suitable candidates for EVT remains a significant challenge. AREAS COVERED This review focuses on the clinical, radiological, and procedural considerations for EVT in acute stroke that assist in optimal patient selection. EXPERT OPINION All patients presenting with significant clinical deficits with treatable occlusions, who have salvageable brain tissue at presentation might benefit from treatment up to twenty-four hours from symptom onset. Neuroimaging tools form the backbone for this decision making.
Collapse
Affiliation(s)
- Ankur Wadhwa
- Calgary Stroke Program, University of Calgary, Foot Hills Medical Center , Calgary, AB, Canada
| | - Raed A Joundi
- Calgary Stroke Program, University of Calgary, Foot Hills Medical Center , Calgary, AB, Canada
| | - Bijoy Menon
- Clinical Neurosciences, University of Calgary, Foot Hills Medical Center , Calgary, AB, Canada
| |
Collapse
|