1
|
Brugnini G, Rodríguez J, Rodríguez S, Martínez I, Pelaggio R, Rufo C. Effects of Fermentation Temperature, Drying Temperature, Caliber Size, Starter Culture, and Sodium Lactate on Listeria monocytogenes Inactivation During Salami Production. J Food Prot 2024; 87:100286. [PMID: 38697485 DOI: 10.1016/j.jfp.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
The effect of fermentation and drying temperatures, caliber, and sodium lactate on Listeria monocytogenes inactivation was studied in salami, produced in a pilot scale, inoculated with 107 CFU/g of Listeria innocua ATCC® 33090 as a surrogate microorganism for L. monocytogenes. Fermentation temperature varied between 24 and 30°C, drying temperature between 14 and 20°C, caliber between 5.1 and 13.2 cm, and sodium lactate initial concentrations in salamis were 0 and 2%. L. innocua counts, pH and water activity were determined in salamis over time. Sodium lactate (2%) decreased pH drop and Listeria inactivation during fermentation. Baranyi & Roberts equation was used to fit the experimental data and to estimate, for each test condition, inactivation rate (k), initial (Y0), and final counts of L. innocua (YEND). Total inactivation was calculated as Y0 minus YEND (Y0-YEND). Then, using a Box Benkhen experimental design, a quadratic model for k and a two-factor interaction model (2FI) for Y0 - YEND were obtained as functions of fermentation temperature, drying temperature, and caliber size. The models predicted that maximum k and Y0 -YEND, -2.62 ± 0.14 log10 CFU/g/day and 4.5 ± 0.1 log10 CFU/g, respectively, would be obtained fermenting at 30°C and drying at 20°C regardless of caliber. Drying at 14°C allowed Listeria growth until a water activity (aw) of 0.92 was reached. Therefore, if initial Listeria contamination is high (3 log10 CFU/g), drying at low temperatures will compromise product safety.
Collapse
Affiliation(s)
- Giannina Brugnini
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay.
| | - Jesica Rodríguez
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Uruguay.
| | - Soledad Rodríguez
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Uruguay.
| | - Inés Martínez
- Latitud - Fundación LATU, Laboratorio Tecnológico del Uruguay, Avenida Italia 6201, Uruguay.
| | - Ronny Pelaggio
- Latitud - Fundación LATU, Laboratorio Tecnológico del Uruguay, Avenida Italia 6201, Uruguay.
| | - Caterina Rufo
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Uruguay.
| |
Collapse
|
2
|
Drevin M, Plötz M, Krischek C. Investigation of the Suitability of a Combination of Ethyl-Να-dodecanyl-L-arginat_HCl (LAE) and Starter Culture Bacteria for the Reduction of Bacteria from Fresh Meat of Different Animal Species. Foods 2023; 12:4138. [PMID: 38002195 PMCID: PMC10670078 DOI: 10.3390/foods12224138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Meat can be contaminated with (pathogenic) microorganisms during slaughter, dissection and packaging. Therefore, preservation technologies are frequently used to reduce the risk of (fatal) human infections due to the consumption of meat. In this study, we first investigated, if the application of ethyl-Nα-dodecanyl-L-arginate hydrochloride (LAE) and the starter culture bacteria Staphylococcus carnosus and Lactobacillus sakei, either single or in combination, influences the bacteria number on pork, chicken meat and beef, inoculated with Brochothrix (Br.) thermosphacta (all meat species) or Salmonella (S.) Typhimurium (pork), Campylobacter (C.) jejuni (chicken) and Listeria (L.) monocytogenes (beef), before packaging under modified atmosphere and on days 7 and 14 of storage. To evaluate effects of the treatment on the appearance during storage, additionally, the physicochemical parameters color and myoglobin redox form percentages were analyzed. LAE regularly resulted in a significant reduction of the number of all bacteria species on day 1 of storage, whereas up to day 14 of storage, the preservation effect did not persist in nearly all samples, except in the beef with Br. thermosphacta. However, with the starter culture bacteria on day 1, only L. monocytogenes on beef was significantly reduced. Interestingly, on day 7 of storage, this reducing effect was also found with S. Typhimurium on pork. Br. thermosphacta, which was principally not influenced by the starter culture bacteria. The combinatory treatment mainly resulted in no additional effects, except for the S. Typhimurium and Br. thermosphacta results on pork on day 7 and the Br. thermosphacta results on beef on day 14. The physicochemical parameters were not influenced by the single and combinatory treatment. The results indicate that LAE was mainly responsible for the antimicrobial effects and that a combination with starter culture bacteria should be individually evaluated for the meat species.
Collapse
Affiliation(s)
| | | | - Carsten Krischek
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.)
| |
Collapse
|
3
|
Karbowiak M, Szymański P, Zielińska D. Synergistic Effect of Combination of Various Microbial Hurdles in the Biopreservation of Meat and Meat Products—Systematic Review. Foods 2023; 12:foods12071430. [PMID: 37048251 PMCID: PMC10093799 DOI: 10.3390/foods12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The control of spoilage microorganisms and foodborne pathogens in meat and meat products is a challenge for food producers, which potentially can be overcome through the combined use of biopreservatives, in the form of a mix of various microbial hurdles. The objective of this work is to systematically review the available knowledge to reveal whether various microbial hurdles applied in combination can pose an effective decontamination strategy for meat and meat products. PubMed, Web of Science, and Scopus were utilized to identify and evaluate studies through February 2023. Search results yielded 45 articles that met the inclusion criteria. The most common meat biopreservatives were combinations of various starter cultures (24 studies), and the use of mixtures of non-starter protective cultures (13 studies). In addition, studies evaluating antimicrobial combinations of bacteriocins with other bacteriocins, BLIS (bacteriocin-like inhibitory substance), non-starter protective cultures, reuterin, and S-layer protein were included in the review (7 studies). In one study, a biopreservative mixture comprised antifungal protein PgAFP and protective cultures. The literature search revealed a positive effect, in most of the included studies, of the combination of various bacterial antimicrobials in inhibiting the growth of pathogenic and spoilage bacteria in meat products. The main advantages of the synergistic effect achieved were: (1) the induction of a stronger antimicrobial effect, (2) the extension of the spectrum of antibacterial action, and (3) the prevention of the regrowth of undesirable microorganisms. Although further research is required in this area, the combination of various microbial hurdles can pose a green and valuable biopreservation approach for maintaining the safety and quality of meat products.
Collapse
Affiliation(s)
- Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C St., (Building No. 32), 02-776 Warsaw, Poland;
| | - Piotr Szymański
- Department of Meat and Fat Technology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C St., (Building No. 32), 02-776 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
4
|
Culture-dependent and Culture-independent Evaluation of the Effect of Protective Cultures on Spoilage-related Bacteria in Vacuum-packaged Beef Mince. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Lahiri D, Chakraborti S, Jasu A, Nag M, Dutta B, Dash S, Ray RR. Production and purification of bacteriocin from Leuconostoc lactis SM 2 strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Wang K, Pu H, Sun DW. Emerging Spectroscopic and Spectral Imaging Techniques for the Rapid Detection of Microorganisms: An Overview. Compr Rev Food Sci Food Saf 2018; 17:256-273. [DOI: 10.1111/1541-4337.12323] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Kaiqiang Wang
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 China
- Acad. of Contemporary Food Engineering, South China Univ. of Technology; Guangzhou Higher Education Mega Center; Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods; Guangzhou Higher Education Mega Center; Guangzhou 510006 China
| | - Hongbin Pu
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 China
- Acad. of Contemporary Food Engineering, South China Univ. of Technology; Guangzhou Higher Education Mega Center; Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods; Guangzhou Higher Education Mega Center; Guangzhou 510006 China
| | - Da-Wen Sun
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 China
- Acad. of Contemporary Food Engineering, South China Univ. of Technology; Guangzhou Higher Education Mega Center; Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods; Guangzhou Higher Education Mega Center; Guangzhou 510006 China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, Univ. College Dublin; National Univ. of Ireland; Belfield Dublin 4 Ireland
| |
Collapse
|
7
|
Use of Lactobacillus plantarum as Starter Culture and Its Influence on Physicochemical, Microbiological, and Sensory Characteristics of Kunnu-Aya Produced from Sorghum and Tigernut. J FOOD QUALITY 2017. [DOI: 10.1155/2017/6738137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kunun-aya is a traditional nonalcoholic beverage in the northern part of Nigeria, normally prepared from cereals. In this investigation Lactobacillus plantarum, isolated from fermenting kunun, was applied as starter culture during production of kunun-aya from varying combinations of sorghum and tigernut. The quality attributes of the product indicated increase in ash and protein contents of product inoculated with starter culture (PISC) over the uninoculated control sample (UCS). The highest values of 4.43% and 6.95% were recorded for ash and protein, respectively, in the product from fifty percent each of sorghum and tigernut (50SOR/50TIG). Titratable acidity was higher in PISC compared to UCS; the 50SOR/50TIG sample had the highest value of 0.92. The PISC recorded reduced counts of Salmonella, coliforms, and Staphylococci. The SCIS were preferred by panellists in the sensory attributes of appearance, aroma, taste, mouthfeel, and general acceptability. It was concluded that the use of L. plantarum as starter culture in the production of kunun-aya was advantageous as a result of enhanced nutritional, sensory, and microbial qualities recorded compared to UCS. Reduction in Salmonella, coliforms, and Staphylococci in PISC may be of public health significance. This on quality improvement of the traditional beverage has not been previously reported.
Collapse
|
8
|
Feng CH, Sun DW, García Martín JF, Zhang ZH. Effects of different cooling methods on shelf-life of cooked jumbo plain sausages. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.05.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|