1
|
Jiang D, Xu X, Wang Z, Yu C, Wang Z, Xu Y, Chu X, Li M, Zhang F, Hu X. Optimization and Stability Assessment of Monochamus alternatus Antimicrobial Peptide MaltAtt-1 in Komagataella phaffii GS115 for the Control of Pine Wood Nematode. Int J Mol Sci 2024; 25:8555. [PMID: 39201243 PMCID: PMC11354690 DOI: 10.3390/ijms25168555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
MaltAtt-1 is an antimicrobial peptide isolated from Monochamus alternatus with nematocidal activity against pine wood nematode. In this study, a eukaryotic expression system based on Komagataella phaffii GS115 was established, and its secretory expression of MaltAtt-1 was realized. The basic properties and secondary and tertiary structures of the antimicrobial peptide MaltAtt-1 were identified by bioinformatics analysis. MaltAtt-1 is a hydrophilic stable protein, mainly composed of an α-helix (Hh), β-folds (Ee), and irregular curls (Cc). The optimal fermentation conditions for MaltAtt-1 were determined by a single-factor test and the Box-Behnken response surface method, including an induction time of 72 h, induction temperature of 30 °C, culture medium of pH 7.6, methanol volume fraction of 2.0%, and an initial glycerol concentration of 1%. The stability of MaltAtt-1 indicated its resistant to UV irradiation and repeated freezing and thawing, but the antibacterial activity decreased significantly under the influence of high temperature and a strong acid and base, and it decreased significantly to 1.1 cm and 0.83 cm at pH 2.0 and pH 10.0, respectively. The corrected mortality of B. xylophilus achieved 71.94% in 3 h at a concentration of 300 mg·L-1 MaltAtt-1 exposure. The results provide a theoretical basis for the antimicrobial peptide MaltAtt-1 to become a new green and efficient nematicide.
Collapse
Affiliation(s)
- Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuhuizi Xu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeguang Wang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeqing Wang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuda Xu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
de Azevedo POS, Mendonça CMN, Seibert L, Domínguez JM, Converti A, Gierus M, Oliveira RPS. Bacteriocin-like inhibitory substance of Pediococcus pentosaceus as a biopreservative for Listeria sp. control in ready-to-eat pork ham. Braz J Microbiol 2020; 51:949-956. [PMID: 32144691 PMCID: PMC7455651 DOI: 10.1007/s42770-020-00245-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/10/2020] [Indexed: 10/24/2022] Open
Abstract
The growing demand of consumers for synthetic chemical-free foods has increased the search for natural preservatives such as bacteriocins and bacteriocin-like inhibitory substances (BLIS) to give them adequate microbiological safety, sensory characteristics, and shelf life. In this study, the antimicrobial activity of BLIS produced by Pediococcus pentosaceus ATCC 43200 was compared with that of nisin. Lactobacillus sakei ATCC 15521, Listeria seeligeri NCTC 11289, Enterococcus En2052 and En2865, and Listeria monocytogenes CECT 934 and NADC 2045 exhibited larger inhibition halos in BLIS-treated than in Nisaplin-treated samples, unlike Listeria innocua NCTC 11288. In artificially contaminated ready-to-eat pork ham, BLIS was effective in inhibiting the growth of L. seeligeri NCTC 11289 for 6 days (counts from 1.74 to 0.00 log CFU/g) and ensured lower weight loss (2.7%) and lipid peroxidation (0.63 mg MDA/kg) of samples compared with the control (3.0%; 1.25 mg MDA/kg). At the same time, coloration of ham samples in terms of luminosity, redness, and yellowness as well as discoloration throughout cold storage was not influenced by BLIS or Nisaplin taken as a control. These results suggest the potential use of P. pentosaceus BLIS as a biopreservative in meat and other food processing industries.
Collapse
Affiliation(s)
- Pamela O S de Azevedo
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos M N Mendonça
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil
| | - Liane Seibert
- Department of Animal Science, Laboratory of Ecology and Natural Grassland, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - José M Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Via Opera Pia 15, 16145, Genoa, Italy
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Ricardo P S Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Moretti de Almeida G, Nóbrega Mendonça CM, Converti A, Pinheiro de Souza Oliveira R. Kinetic and thermodynamic parameters of nisin thermoinactivation. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Zhou J, Chen L, Liu Y, Shen T, Zhang C, Liu Z, Feng X, Wang C. Antimicrobial peptide PMAP-37 analogs: Increasing the positive charge to enhance the antibacterial activity of PMAP-37. J Pept Sci 2020; 25:e3220. [PMID: 31858653 DOI: 10.1002/psc.3220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
Bacterial resistance induced by the use of antibiotics has provided a chance for the development of antimicrobial peptides (AMPs), and modification of AMPs to enhance the antibacterial activity or stability has become a research focus. PMAP-37 is an AMP isolated from porcine myeloid marrow, and studies on its modification have not yet been reported. In this study, three PMAP-37 analogs named PMAP-37(F9-R), PMAP-37(F34-R), and PMAP-37(F9/34-R) were designed by residue substitution to enhance the positive charge. The antimicrobial activity of PMAP-37 and its analogs in vitro and in vivo were detected. The results showed that compared with PMAP-37, PMAP-37(F9-R) and PMAP-37(F9/34-R) exhibited antibacterial activity against S. flexneri CICC21534. Although PMAP-37(F34-R) had no antibacterial activity against S. flexneri CICC21534, its minimal inhibitory concentrations (MICs) were significantly lower than those of PMAP-37 against most bacterial strains. Besides, all PMAP-37 analogs were pH stable, retaining stable antibacterial activity after treatment with solution from pH 2 to pH 8/9. In addition, the PMAP-37 analogs displayed increased thermal stability, and PMAP-37(F34-R) retained >60% antibacterial activity after boiling for 2 hours. Furthermore, the PMAP-37 analogs exhibited impressive therapeutic efficacy in bacterial infections by reducing bacterial burden and inflammatory damage in the lung and liver, resulting in a reduction in mortality. Notably, the therapeutic effect of PMAP-37(F34-R) was comparable to that of ceftiofur sodium, and even superior to antibiotics in L. monocytogenes CICC21533 infection model. In conclusion, the PMAP-37(F34-R) may be a candidate for the treatment of bacterial infections in the clinic.
Collapse
Affiliation(s)
- Jiangfei Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Liangliang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yongqing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tengfei Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Cong Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhixin Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chen Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
5
|
Synthesis and antimicrobial activities of novel sorbic and benzoic acid amide derivatives. Food Chem 2018; 268:220-232. [PMID: 30064751 DOI: 10.1016/j.foodchem.2018.06.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/30/2018] [Accepted: 06/14/2018] [Indexed: 01/17/2023]
Abstract
A series of sorbic and benzoic acid amide derivatives were synthesized by conjugating sorbic acid (SAAD, a1-a7) or benzoic acid (BAAD b1-b6) with amino acid esters and their antimicrobial activities were investigated against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, mixed bacteria from rancid milk, Saccharomyces cerevisiae, and Aspergillus niger. The antimicrobial activity of sorbic acid amides was better than that of benzoic acid amides. The minimum inhibitory concentrations (MIC) of compound isopropyl N-[1-oxo-2, 4-hexadien-1-yl]-L-phenylalaninate (a7) were 0.17 mM against B. subtilis, and 0.50 mM against S. aureus, while the MIC values of sorbic acid were more than 2 mM respectively. Also, compound a7 displayed pH-independent antimicrobial activity in the range of pH 5.0-9.0 and was effective at pH 9.0. These results demonstrated that the conjugation of sorbic acid with amino acid esters led to significant improvement of in vitro antimicrobial attributes, but little effect was observed for benzoic acid amide derivatives.
Collapse
|