1
|
Fang F, Liu B, Fu L, Tang H, Li Y, Pang X, Zhang Z. Water Supply via Pedicel Reduces Postharvest Pericarp Browning of Litchi ( Litchi chinensis) Fruit. Foods 2024; 13:814. [PMID: 38472927 DOI: 10.3390/foods13050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Pericarp browning is the key factor for the extension of shelf life and the maintenance of the commercial value of harvested litchi fruit. Water loss is considered a leading factor of pericarp browning in litchi fruit. In this study, based on the distinct structure of litchi fruit, which is a special type of dry fruit with the aril as the edible part, the effects of water supply via pedicel (WSP) treatment on pericarp browning and the fruit quality of litchi were investigated. Compared with the packaging of the control fruit at 25 °C or 4 °C, the WSP treatment was found to significantly reduce pericarp browning and the decay of litchi fruit. The WSP-treated fruit had a higher L* value, total anthocyanin content, and pericarp water content, and the pericarp was thicker. The WSP treatment significantly suppressed the increase in the electrolyte leakage of the pericarp and maintained higher ascorbic acid (AA) contents in the aril. In addition, the WSP treatment was effective in reducing the activity and gene expression of browning-related genes Laccase (ADE/LAC) and Peroxidase (POD) during the storage period. In conclusion, the WSP treatment could be an effective method to delay pericarp browning and maintain the quality of harvested litchi fruit, and this further supports that litchi fruit has dry fruit characteristics.
Collapse
Affiliation(s)
- Fang Fang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Liyu Fu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Haiyao Tang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Yanlan Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoqi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
3
|
Fahima A, Levinkron S, Maytal Y, Hugger A, Lax I, Huang X, Eyal Y, Lichter A, Goren M, Stern RA, Harpaz-Saad S. Cytokinin treatment modifies litchi fruit pericarp anatomy leading to reduced susceptibility to post-harvest pericarp browning. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:41-50. [PMID: 31128712 DOI: 10.1016/j.plantsci.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/31/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Litchi (Litchi chinensis Sonn.) is a subtropical fruit known for its attractive red pericarp color, semi-translucent white aril and unique flavor and aroma. Rapid post-harvest pericarp browning strictly limits litchi fruit marketing. In the current research, we hypothesized that modification of litchi fruit pericarp anatomy by hormone application may reduce fruit susceptibility to post-harvest pericarp browning. In this context, we hypothesized that cytokinin treatment, known to induce cell division, may yield fruit with thicker pericarp and reduced susceptibility for fruit surface micro-crack formation, water loss and post-harvest pericarp browning. Exogenous cytokinin treatment was applied at different stages along the course of litchi fruit development and the effect on fruit pericarp anatomy, fruit maturation and postharvest pericarp browning was investigated. Interestingly, cytokinin treatment, applied 4 weeks after full female bloom (WFB), during the phase of pericarp cell division, led to mature fruit with thicker pericarp, reduced rate of post-harvest water loss and reduced susceptibility to post-harvest pericarp browning, as compared to non-treated control fruit. Histological sections ascribe the difference in pericarp anatomy to increased cell proliferation in the parenchymatic tissue and the highly-lignified brachysclereid cell layer. In contrast, exogenous cytokinin treatment applied 7 WFB, following the phase of pericarp cell division, significantly increased epidermal-cell proliferation but had no significant effect on overall fruit pericarp thickness and only minor affect on post-harvest water loss or pericarp browning. Interestingly, the late cytokinin treatment also significantly postponed fruit maturation-associated anthocyanin accumulation and chlorophyll degradation, as previously reported, but had no effect on other parameters of fruit maturation, like total soluble sugars and total titratable acids typically modified during aril maturation. In conclusion, exogenous cytokinin treatment at different stages in fruit development differentially modifies litchi fruit pericarp anatomy by induction of cell-type specific cell proliferation. Early cytokinin treatment during the phase of pericarp cell division may prolong litchi fruit storage by reducing fruit susceptibility to post-harvest water loss and pericarp browning.
Collapse
Affiliation(s)
- Amit Fahima
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Saar Levinkron
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yochai Maytal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Anat Hugger
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Itai Lax
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Xuming Huang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yoram Eyal
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Amnon Lichter
- Institute of Post-harvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Moshe Goren
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Raphael A Stern
- MIGAL, Galilee Technology Center, Kiryat-Shmona, 11016, Israel; Department of Biotechnology, Faculty of Life Sciences, Tel-Hai College, Upper Galilee, 12210, Israel
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| |
Collapse
|
4
|
Hsu CY, Lin GM, Lin HY, Chang ST. Characteristics of proanthocyanidins in leaves of Chamaecyparis obtusa var. formosana as strong α-glucosidase inhibitors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3806-3814. [PMID: 29352475 DOI: 10.1002/jsfa.8894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND In recent decades, there has been a growing demand for natural products with a view to using them as α-glucosidase inhibitors for reducing postprandial hyperglycemia. In this study, the hot water extract (HWE) from Chamaecyparis obtusa var. formosana (Hayata) Rehder (Cupressaceae) leaves and its soluble fractions were screened for α-glucosidase inhibition properties. The n-butanol-soluble fraction of HWE was further fractionated into 14 subfractions (B1-B14) using a Sephadex LH-20 column. The α-glucosidase-inhibitory activities and proanthocyanidin contents of all subfractions were determined. The structural characteristics of proanthocyanidins in proanthocyanidin-rich fractions were also elucidated. RESULTS HWE produced a dose-dependent inhibition of α-glucosidase at low dose. Its IC50 value was 1.4 µg mL-1 , showing high inhibitory activity. Subfractions B7-B14 displayed powerful α-glucosidase-inhibitory activities with IC50 values ranging between 1 and 0.015 µg mL-1 and contained abundant proanthocyanidins exceeding 300 mg g-1 . The proanthocyanidins with higher mean degree of polymerization (mDP), higher proportions of procyanidin dimer (A1 or A2) and (epi)afzelechin of extension units and a lower proportion of epicatechin of terminal units displayed high α-glucosidase-inhibitory activities. CONCLUSION Proanthocyanidins in HWE were viewed as potential natural α-glucosidase inhibitors for decreasing postprandial hyperglycemia. The results indicated that specific structural characteristics of proanthocyanidins would be required for α-glucosidase-inhibitory activity. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chia-Yun Hsu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Gong-Min Lin
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Huan-You Lin
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Yihui G, Song J, Du L, Vinqvist M, Palmer LC, Fillmore S, Pang X, Zhang Z. Characterization of laccase from apple fruit during postharvest storage and its response to diphenylamine and 1-methylcyclopropene treatments. Food Chem 2018; 253:314-321. [PMID: 29502838 DOI: 10.1016/j.foodchem.2018.01.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
To gain better understanding on laccase in apples and reveal its role in browning color formation during storage, laccases in apples were investigated. The full-length complementary DNAs encoding laccase genes were obtained from different tissues of apple including flowers, calyx, leaves and fruit peel of 'Red Delicious' and 'Cortland'. The apple laccases were compared to those in other plant species and found to have up to 99% homology to Arabidopsis and litchi. qRT-PCR analysis revealed changes in transcript abundance of LAC genes (2, 7, 9, 12, 14, 15 and 16) during storage and in response to DPA and 1-MCP treatments. Enzyme activity of laccase protein in apple peel increased with storage in control fruit, while decreased significantly with DPA or 1-MCP. Changes in phenolic compounds in pericarp tissues decreased generally during storage, but no significant effect of DPA and 1-MCP treatments on the phenolic compounds was found.
Collapse
Affiliation(s)
- Gong Yihui
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Jun Song
- Agriculture and Agri-Food Canada. AFHRC, Kentville, Nova Scotia B4N 1J5, Canada.
| | - Lina Du
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Mindy Vinqvist
- Agriculture and Agri-Food Canada. AFHRC, Kentville, Nova Scotia B4N 1J5, Canada
| | | | - Sherry Fillmore
- Agriculture and Agri-Food Canada. AFHRC, Kentville, Nova Scotia B4N 1J5, Canada
| | - XueQun Pang
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - ZhaoQi Zhang
- College of Horticulture, South China Agriculture University, Guangzhou, China.
| |
Collapse
|
6
|
Enrichment and biotransformation of phenolic compounds from litchi pericarps with angiotensin I-converting enzyme (ACE) inhibition activity. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Koul B, Singh J. Lychee Biology and Biotechnology. THE LYCHEE BIOTECHNOLOGY 2017. [PMCID: PMC7121025 DOI: 10.1007/978-981-10-3644-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lychee (Litchi chinensis Sonn.) is one of the revered members of the soapberry family Sapindaceae which includes 150 genera and 2000 species. It is a tropical and subtropical fruit tree which is native to Fujian and Guangdong regions of China and is cultivated as an important commercial fruit crop in many parts of the world. It is famous for its fragrant and sugary flavour. After China, India is at the second position in the production of lychee in the world. The varieties with large pulp, small seeds and noteworthy flavour are of great interest among the consumers and farmers. Lychee fruit took tremendous attention of scientists as it contains ample amounts of anti-oxidants, vitamins and fibre. Moreover, the plant parts possess considerable anti-pyretic, anti-inflammatory, anti-cancer, anti-diabetic, anti-tumour and anti-oxidant properties. Propagation of lychee from seeds is difficult and not practicable because of longer juvenile period and non-viable, abortive and genetically diverse nature of the seedlings. However, the techniques such as cell, tissue and organ culture (micropropagation) can overcome the difficulties of lychee propagation. Very limited efforts have been made in its varietal improvement through hybridization and modern breeding techniques. In a nutshell, lychee is an important commercial fruit crop, and there is a need to develop technical research so as to sustain and enhance its yield, postharvest management, medicinal value and marketing. This chapter comprises of botanical description, cultivation, medicinal uses, micropropagation and trading of Litchi chinensis.
Collapse
|
8
|
Lin GM, Lin HY, Hsu CY, Chang ST. Structural characterization and bioactivity of proanthocyanidins from indigenous cinnamon (Cinnamomum osmophloeum). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4749-4759. [PMID: 27185335 DOI: 10.1002/jsfa.7802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/02/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Barks and twigs of common species of cinnamon with abundant proanthocyanidins are used as a spice, fold medicine or supplement. Cinnamomum osmophloeum is an endemic species in Taiwan and coumarin was not detected in the oil of the C. osmophloeum twig. The present study aimed to evaluate the relationship between the bioactivities and proanthocyanidins of C. osmophloeum twig extracts (CoTE). The n-butanol soluble fraction from CoTE was divided into 10 subfractions (F1-F10) by Sephadex LH-20 gel chromatography. The antihyperglycemic activities were examined by α-glucosidase, α-amylase and protein tyrosine phosphatase 1B inhibitory assays. Total antioxidant activities were examined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging and ferrous ion-chelating assays. RESULTS The results revealed that subfractions F6-F10, with high proanthocyanidin contents, showed excellent antihyperglycemic and antioxidant activities. Subfractions F6-F10 were analyzed further by matrix-assisted laser desorption/ionization-time of flight/mass spectrometry and thiolysis-reversed-phase high-performance liquid chromatography/tandem mass spectrometry methods. The results showed that the mean degrees of polymerization of proanthocyanidins in subfractions F6-F10 ranged from 3.5 to 5.1, with the highest degrees of polymerization of proanthocyanidins reaching 8 in subfractions F8-F10. Two compounds in F6 were identified as cinnamtannin B1 and parameritannin A1. These proanthocyanidins contained at least one A-type and major B-type linkages. CONCLUSION These results demonstrate that proanthocyanidins are associated with their antihyperglycemic and antioxidant activities in CoTE. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gong-Min Lin
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Huan-You Lin
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chia-Yun Hsu
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
9
|
Kessy HNE, Hu Z, Zhao L, Zhou M. Effect of Steam Blanching and Drying on Phenolic Compounds of Litchi Pericarp. Molecules 2016; 21:molecules21060729. [PMID: 27271581 PMCID: PMC6273031 DOI: 10.3390/molecules21060729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 11/16/2022] Open
Abstract
The effects of different treatment methods on the stability and antioxidant capacity of the bioactive phenolic compounds of litchi pericarps were investigated. Fresh litchi pericarps were open air–dried, steam-blanched for 3 min in combination with hot air oven drying at 60 and 80 °C, and unblanched pericarps were dried in a hot air oven at 40, 60, 70 and 80 °C until equilibrium weight was reached. The total phenolic compounds, flavonoids, anthocyanins, proanthocyanidins and individual procyanidins, and antioxidant activity were analyzed. The combination of blanching and drying at 60 °C significantly (p < 0.05) improved the release of phenolic compounds, individual procyanidins, and the extracts′ antioxidant capacity compared with the unblanched hot air oven-dried and open air–dried pericarps. Drying of fresh unblanched litchi pericarps in either open air or a hot air oven caused significant losses (p < 0.05) in phenolic compounds and individual procyanidins, leading to a reduction in the antioxidant activity. A similar increase, retention or reduction was reflected in flavonoids, proanthocyanidins and anthocyanins because they are sub-groups of phenolic compounds. Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryldydrazyl (DPPH) radical-scavenging capacity of the treated pericarps were significantly correlated (r ≥ 0.927, p < 0.01) with the total phenolic compounds. Thus, the combination of steam blanching and drying treatments of fresh litchi pericarps could produce a stable and dry litchi pericarp that maintains phenolic compounds and antioxidant capacity as a raw material for further recovery of the phytochemicals.
Collapse
Affiliation(s)
- Honest N E Kessy
- Department of Food Engineering, College of Food Science, South China Agricultural University, 483, Wushan Road, Guangzhou 510642, China.
| | - Zhuoyan Hu
- Department of Food Engineering, College of Food Science, South China Agricultural University, 483, Wushan Road, Guangzhou 510642, China.
| | - Lei Zhao
- Department of Food Engineering, College of Food Science, South China Agricultural University, 483, Wushan Road, Guangzhou 510642, China.
| | - Molin Zhou
- Department of Food Engineering, College of Food Science, South China Agricultural University, 483, Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
10
|
Yun Z, Qu H, Wang H, Zhu F, Zhang Z, Duan X, Yang B, Cheng Y, Jiang Y. Comparative transcriptome and metabolome provides new insights into the regulatory mechanisms of accelerated senescence in litchi fruit after cold storage. Sci Rep 2016; 6:19356. [PMID: 26763309 PMCID: PMC4725888 DOI: 10.1038/srep19356] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/08/2015] [Indexed: 11/09/2022] Open
Abstract
Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under ambient conditions (AC) is approximately 4-6 days. Post-harvest cold storage prolongs the life of litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1-2 days. To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and small GTPase-mediated signal transduction. The respiratory burst was largely associated with increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit.
Collapse
Affiliation(s)
- Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Hui Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Feng Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zhengke Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| |
Collapse
|