1
|
Gonçalves MPMBB, do Prado-Silva L, Sant'Ana AS. Emergent methods for inactivation of Cronobacter sakazakii in foods: A systematic review and meta-analysis. Int J Food Microbiol 2024; 421:110777. [PMID: 38909488 DOI: 10.1016/j.ijfoodmicro.2024.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Cronobacter sakazakii is a potentially pathogenic bacterium that is resistant to osmotic stress and low aw, and capable of persisting in a desiccated state in powdered infant milks. It is widespread in the environment and present in various products. Despite the low incidence of cases, its high mortality rates of 40 to 80 % amongst neonates make it a microorganism of public health interest. This current study performed a comparative assessment between current reduction methods applied for C. sakazakii in various food matrices, indicating tendencies and relevant parameters for process optimization. A systematic review and meta-analysis were conducted, qualitatively identifying the main methods of inactivation and control, and quantitatively evaluating the effect of treatment factors on the reduction response. Hierarchical clustering dendrograms led to conclusions on the efficiency of each treatment. Review of recent research trend identified a focus on the potential use of alternative treatments, with most studies related to non-thermal methods and dairy products. Using random-effects meta-analysis, a summary effect-size of 4-log was estimated; however, thermal methods and treatments on dairy matrices displayed wider dispersions - of τ2 = 8.1, compared with τ2 = 4.5 for vegetal matrices and τ2 = 4.0 for biofilms. Meta-analytical models indicated that factors such as chemical concentration, energy applied, and treatment time had a more significant impact on reduction than the increase in temperature. Non-thermal treatments, synergically associated with heat, and treatments on dairy matrices were found to be the most efficient.
Collapse
Affiliation(s)
| | - Leonardo do Prado-Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil.
| |
Collapse
|
2
|
Geng Z, Ye P, Zhou L, Fu H, Chen X, Wang Y, Wang Y. Pasteurization of Salmonella spp. in black fungus ( Auricularia auricula) powder by radio frequency heating. FOOD SCI TECHNOL INT 2024; 30:3-17. [PMID: 36065562 DOI: 10.1177/10820132221123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radio frequency (RF) heating has been studied to inactivate bacteria in some powder foods. In this study, a 6 kW, 27.12 MHz RF system was used to pasteurize Salmonella in black fungus (Auricularia auricula) powder. The effects of different conditions (initial aw, electrodes gaps, particle sizes) on RF heating rate and uniformity were investigated. The results showed that RF heating rate was significantly (p < 0.05) improved with decreasing electrodes gap and increasing initial aw, and the heating rate was the slowest when the particle size was 120-160 mesh. However, these factors had no significant (p > 0.05) influence on heating uniformity. RF pasteurization of Salmonella in black fungus powder was also studied. The results showed that, to inactivate Salmonella for 5 log reductions in the cold spot (the center of surface layer), the time needed and bacteria heat resistance at designated temperature (65, 75, 85 °C) decreased with increasing aw, and the first order kinetics and Weibull model could be used to fit inactivation curves of Salmonella with well goodness. Quality analysis results showed that although RF pasteurization had no significant (p > 0.05) effect on Auricularia auricula polysaccharide (AAP) and total polyphenols, obvious changes were found on color. Results suggested that RF pasteurization can be considered as an effective pasteurization method for black fungus powder.
Collapse
Affiliation(s)
- Zheng Geng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Liangfu Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Transcriptomic and phenotypic changes of Cronobacter sakazakii ATCC 29544 grown under desiccation stress. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Balamurugan S, Zaidi M, Arvaj L, Pendyala B, Gabriel M, Farber JM, Sasges M, Patras A. Modeling the UV-C Inactivation Kinetics and Determination of Fluence Required for Incremental Inactivation of Cronobacter spp. J Food Prot 2022; 85:1625-1634. [PMID: 36075045 DOI: 10.4315/jfp-22-165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT A study was undertaken to model the UV-C inactivation kinetics and determine the fluences required for the incremental inactivation of several strains of Cronobacter spp. suspended in clear phosphate-buffered saline (PBS). In total, 13 strains of Cronobacter spp. were individually suspended in PBS and treated with UV-C doses of 0, 2, 4, 6, 8, and 10 mJ cm-2 with a collimated beam device emitting UV-C at 253.7 nm. The log reduction from each treatment was identified using the plate count method and plotted against the UV-C dose and then curve fitted using several mathematical models. The UV-C dose required for incremental inactivation of each isolate was determined using both linear and nonlinear regression. For the 13 strains tested, a UV-C dose of 10 mJ cm-2 inactivated between 3.66 ± 0.101 and 5.04 ± 0.465 log CFU mL-1. The survival behavior of all strains was best fitted to the Weibull+tail model, with correlation coefficients between 97.17 and 99.71%, and was used to determine the fluences required for incremental inactivation. The UV-C fluences needed to inactivate 1 log (D10-value) of Cronobacter spp. in buffer were between 3.53 and 5.50 mJ cm-2, whereas a fluence greater than 6.57 mJ cm-2 was required to achieve a 4-log inactivation. A clear understanding of the UV-C dose-response of several strains of Cronobacter spp. lays the foundation to design effective UV-based disinfection systems. HIGHLIGHTS
Collapse
Affiliation(s)
- Sampathkumar Balamurugan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Mubashira Zaidi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Laura Arvaj
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Brahmaiah Pendyala
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee 37209, USA
| | | | - Jeffrey M Farber
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.,JM Farber Global Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | - Ankit Patras
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee 37209, USA
| |
Collapse
|
5
|
Abea A, Gou P, Guàrdia MD, Picouet P, Kravets M, Bañón S, Muñoz I. Dielectric Heating: A Review of Liquid Foods Processing Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2092746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Andres Abea
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| | - Pere Gou
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| | | | - Pierre Picouet
- USC 1422 GRAPPE, INRA, Ecole Supérieure d’Agricultures, Univ. Bretagne Loire, Angers, France
| | - Marina Kravets
- Department of Food Science and Technology and Nutrition, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Sancho Bañón
- Department of Food Science and Technology and Nutrition, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Israel Muñoz
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| |
Collapse
|
6
|
Soni A, Samuelsson LM, Loveday SM, Gupta TB. Applications of novel processing technologies to enhance the safety and bioactivity of milk. Compr Rev Food Sci Food Saf 2021; 20:4652-4677. [PMID: 34427048 DOI: 10.1111/1541-4337.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Bioactive compounds in food can have high impacts on human health, such as antioxidant, antithrombotic, antitumor, and anti-inflammatory activities. However, many of them are sensitive to thermal treatments incurred during processing, which can reduce their availability and activity. Milk, including ovine, caprine, bovine, and human is a rich source of bioactive compounds, including immunoglobulins, vitamins, and amino acids. However, processing by various novel thermal and non-thermal technologies has different levels of impacts on these compounds, according to the studies reported in the literature, predominantly in the last 10 years. The reported effect of these technologies either covers microbial inactivation or the bioactive composition; however, there is a lack of comprehensive compilation of studies that compare the effect of these technologies on bioactive compounds in milk (especially, caprine and ovine) to microbial inactivation at similar settings. This research gap makes it challenging to conclude on the specific processing parameters that could be optimized to achieve targets of microbial safety and nutritional quality at the same time. This review covers the effect of a wide range of thermal and non-thermal processing technologies including high-pressure processing, pressure-assisted thermal sterilization, pulsed-electric field treatment, cold plasma, microwave-assisted thermal sterilization, ultra-high-pressure homogenization, ultrasonication, irradiation on the bioactive compounds as well as on microbial inactivation in milk. Although a combination of more than one technology could improve the reduction of bacterial contaminants to meet the required food safety standards and retain bioactive compounds, there is still scope for research on these hurdle approaches to simultaneously achieve food safety and bioactivity targets.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| | - Linda M Samuelsson
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand
| | - Simon M Loveday
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B Gupta
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
7
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
8
|
Pinto RO, do Nascimento RB, Jermolovicius LA, Jurkiewicz C, Gut JA, Pinto UM, Landgraf M. Microbiological feasibility of microwave processing of coconut water. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Kubo MTK, Siguemoto ÉS, Funcia ES, Augusto PED, Curet S, Boillereaux L, Sastry SK, Gut JAW. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Harouna S, Franco I, Carramiñana JJ, Blázquez A, Abad I, Pérez MD, Calvo M, Sánchez L. Effect of hydrolysis and microwave treatment on the antibacterial activity of native bovine milk lactoferrin against Cronobacter sakazakii. Int J Food Microbiol 2019; 319:108495. [PMID: 31911211 DOI: 10.1016/j.ijfoodmicro.2019.108495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/19/2023]
Abstract
Bovine lactoferrin (bLF) is an iron-binding glycoprotein used in functional and therapeutic products due to its biological properties, the most important being its antimicrobial activity. In this study, hydrolysates of bovine lactoferrin (bLFH) obtained with pepsin, chymosin and microbial rennet were assayed against Cronobacter sakazakii (104 CFU/mL) in different media: phosphate buffered saline (PBS), bovine skim milk and whey, and reconstituted powdered infant formula (PIFM). The results obtained have shown that hydrolysis of bLF enhances its antibacterial activity against C. sakazakii. The three types of bLFH dissolved in PBS reduced C. sakazakii growth from a concentration of 0.1 mg/mL and inhibited it completely above 0.5 mg/mL, after 4 and 8 h of incubation at 37 °C. The three bLFH (1 and 2 mg/mL) did not show any antibacterial activity in skim milk, whey and reconstituted PIFM after 8 h of incubation at 37 °C. However, C. sakazakii growth was completely inhibited in whey when pepsin and chymosin bLFH (2 mg/mL) were combined with undigested bLF (2 mg/mL), after 8 h of incubation at 37 °C. On the other hand, the combination of any of the three hydrolysates with bLF showed very low activity in skim milk and practically no activity in reconstituted PIFM. Furthermore, the effect of temperature after reconstitution (4, 23 and 37 °C), on the antibacterial activity of bLF (2.5 and 5 mg/mL) in reconstituted PIFM contaminated with C. sakazakii (10-102 CFU/mL) was also investigated. bLF at 5 mg/mL significantly reduced (p < .05) the proliferation of C. sakazakii in reconstituted PIFM at 37 °C until 2 h. C. sakazakii did not grow at 4 °C for 6 days in reconstituted PIFM with or without bLF. The effect of microwave heating (450, 550 and 650 W for 5, 10 and 15 s) on the antibacterial activity and stability of bLF (2.5 mg/mL) in reconstituted PIFM contaminated with C. sakazakii (10-102 CFU/mL) was also studied. The antibacterial activity of bLF was maintained after treatments at 450 and 550 W for 5 s, which kept 94 and 89% of bLF immunoreactivity, respectively. Moreover, microwave treatments of reconstituted PIFM with or without bLF, at 650 W for 5 s, and at 450, 550 and 650 W for 10 and 15 s, completely inactivated C. sakazakii.
Collapse
Affiliation(s)
- Saidou Harouna
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Indira Franco
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain; Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Campus Metropolitano Víctor Levi Sasso, Panamá, Panamá
| | - Juan J Carramiñana
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Arturo Blázquez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - María D Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Miguel Calvo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain.
| |
Collapse
|
11
|
Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res Int 2019; 126:108654. [DOI: 10.1016/j.foodres.2019.108654] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
|
12
|
Portela JB, Coimbra PT, Cappato LP, Alvarenga VO, Oliveira RB, Pereira KS, Azeredo DR, Sant’Ana AS, Nascimento JS, Cruz AG. Predictive model for inactivation of salmonella in infant formula during microwave heating processing. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Martins CPC, Cavalcanti RN, Couto SM, Moraes J, Esmerino EA, Silva MC, Raices RSL, Gut JAW, Ramaswamy HS, Tadini CC, Cruz AG. Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products. Compr Rev Food Sci Food Saf 2019; 18:67-83. [DOI: 10.1111/1541-4337.12409] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Carolina P. C. Martins
- Dept. of Food Technology; Federal Rural Univ. of Rio de Janeiro (UFRRJ); Rodovia BR 465, km 7 23890-000 Seropédica RJ Brazil
| | - Rodrigo N. Cavalcanti
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
- Dept. of Food Science and Agricultural Chemistry; McGill Univ.; Macdonald campus, 21,111 Lakeshore H9X 3V9 Sainte Anne de Bellevue Quebec Canada
| | - Silvia M. Couto
- Nutrition Inst. Josué de Castro; Federal Univ. of Rio de Janeiro (UFRJ); Av. Carlos Chagas Filho, 373, CCS, Bloco J/2° andar, Cidade Univ., Ilha do Fundão 21941-902 Rio de Janeiro RJ Brazil
| | - Jeremias Moraes
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Erick A. Esmerino
- Dept. of Food Technology; Federal Rural Univ. of Rio de Janeiro (UFRRJ); Rodovia BR 465, km 7 23890-000 Seropédica RJ Brazil
| | - Marcia Cristina Silva
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Renata S. L. Raices
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Jorge A. W. Gut
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
| | - Hosahalli S. Ramaswamy
- Dept. of Food Science and Agricultural Chemistry; McGill Univ.; Macdonald campus, 21,111 Lakeshore H9X 3V9 Sainte Anne de Bellevue Quebec Canada
| | - Carmen C. Tadini
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
| | - Adriano G. Cruz
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| |
Collapse
|
14
|
Siguemoto ÉS, Gut JAW, Martinez A, Rodrigo D. Inactivation kinetics of Escherichia coli O157:H7 and Listeria monocytogenes in apple juice by microwave and conventional thermal processing. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Parra-Flores J, Juneja V, Garcia de Fernando G, Aguirre J. Variability in Cell Response of Cronobacter sakazakii after Mild-Heat Treatments and Its Impact on Food Safety. Front Microbiol 2016; 7:535. [PMID: 27148223 PMCID: PMC4836016 DOI: 10.3389/fmicb.2016.00535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/01/2016] [Indexed: 12/05/2022] Open
Abstract
Cronobacter spp. have been responsible for severe infections in infants associated with consumption of powdered infant formula and follow-up formulae. Despite several risk assessments described in published studies, few approaches have considered the tremendous variability in cell response that small micropopulations or single cells can have in infant formula during storage, preparation or post process/preparation before the feeding of infants. Stochastic approaches can better describe microbial single cell response than deterministic models as we prove in this study. A large variability of lag phase was observed in single cell and micropopulations of ≤50 cells. This variability increased as the heat shock increased and growth temperature decreased. Obviously, variability of growth of individual Cronobacter sakazakii cell is affected by inoculum size, growth temperature and the probability of cells able to grow at the conditions imposed by the experimental conditions should be taken into account, especially when errors in bottle-preparation practices, such as improper holding temperatures, or manipulation, may lead to growth of the pathogen to a critical cell level. The mean probability of illness from initial inoculum size of 1 cell was below 0.2 in all the cases and for inoculum size of 50 cells the mean probability of illness, in most of the cases, was above 0.7.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Departamento de Nutrición y Salud Pública, Universidad del Bío-BíoChillán, Chile
| | - Vijay Juneja
- Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Gonzalo Garcia de Fernando
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Juan Aguirre
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad ComplutenseMadrid, Spain
| |
Collapse
|
16
|
Shi C, Zhang X, Sun Y, Yang M, Song K, Zheng Z, Chen Y, Liu X, Jia Z, Dong R, Cui L, Xia X. Antimicrobial Activity of Ferulic Acid Against Cronobacter sakazakii and Possible Mechanism of Action. Foodborne Pathog Dis 2016; 13:196-204. [PMID: 26919471 DOI: 10.1089/fpd.2015.1992] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen transmitted by food that affects mainly newborns, infants, and immune-compromised adults. In this study, the antibacterial activity of ferulic acid was tested against C. sakazakii strains. Minimum inhibitory concentration of ferulic acid against C. sakazakii strains was determined using the agar dilution method. Changes in intracellular pH, membrane potential and intracellular ATP concentration were measured to elucidate the possible antibacterial mechanism. Moreover, SYTO 9 nucleic acid staining was used to assess the effect of ferulic acid on bacterial membrane integrity. Cell morphology changes were observed under a field emission scanning electron microscope. The minimum inhibitory concentrations of ferulic acid against C. sakazakii strains ranged from 2.5 to 5.0 mg/mL. Addition of ferulic acid exerted an immediate and sustained inhibition of C. sakazakii proliferation. Ferulic acid affected the membrane integrity of C. sakazakii, as evidenced by intracellular ATP concentration decrease. Moreover, reduction of intracellular pH and cell membrane hyperpolarization were detected in C. sakazakii after exposure to ferulic acid. Reduction of green fluorescence indicated the injury of cell membrane. Electronic microscopy confirmed that cell membrane of C. sakazakii was damaged by ferulic acid. Our results demonstrate that ferulic acid has moderate antimicrobial activity against C. sakazakii. It exerts its antimicrobial action partly through causing cell membrane dysfunction and changes in cellular morphology. Considering its antimicrobial properties, together with its well-known nutritional functions, ferulic acid has potential to be developed as a supplement in infant formula or other foods to control C. sakazakii.
Collapse
Affiliation(s)
- Chao Shi
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Xiaorong Zhang
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Yi Sun
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Miaochun Yang
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Kaikuo Song
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Zhiwei Zheng
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Yifei Chen
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Xin Liu
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Zhenyu Jia
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Rui Dong
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Lu Cui
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| |
Collapse
|
17
|
Półtorak A, Wyrwisz J, Moczkowska M, Marcinkowska-Lesiak M, Stelmasiak A, Rafalska U, Wierzbicka A, Sun DW. Microwave vs. convection heating of bovineGluteus Mediusmuscle: impact on selected physical properties of final product and cooking yield. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12729] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Półtorak
- Division of Engineering in Nutrition; Faculty of Human Nutrition and Consumer Sciences; Warsaw University of Life Sciences - SGGW; Nowoursynowska 159c Warsaw 02-776 Poland
| | - J. Wyrwisz
- Division of Engineering in Nutrition; Faculty of Human Nutrition and Consumer Sciences; Warsaw University of Life Sciences - SGGW; Nowoursynowska 159c Warsaw 02-776 Poland
| | - M. Moczkowska
- Division of Engineering in Nutrition; Faculty of Human Nutrition and Consumer Sciences; Warsaw University of Life Sciences - SGGW; Nowoursynowska 159c Warsaw 02-776 Poland
| | - M. Marcinkowska-Lesiak
- Division of Engineering in Nutrition; Faculty of Human Nutrition and Consumer Sciences; Warsaw University of Life Sciences - SGGW; Nowoursynowska 159c Warsaw 02-776 Poland
| | - A. Stelmasiak
- Division of Engineering in Nutrition; Faculty of Human Nutrition and Consumer Sciences; Warsaw University of Life Sciences - SGGW; Nowoursynowska 159c Warsaw 02-776 Poland
| | - U. Rafalska
- Division of Engineering in Nutrition; Faculty of Human Nutrition and Consumer Sciences; Warsaw University of Life Sciences - SGGW; Nowoursynowska 159c Warsaw 02-776 Poland
| | - A. Wierzbicka
- Division of Engineering in Nutrition; Faculty of Human Nutrition and Consumer Sciences; Warsaw University of Life Sciences - SGGW; Nowoursynowska 159c Warsaw 02-776 Poland
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology; Agriculture and Food Science Centre; University College Dublin; National University of Ireland; Belfield Dublin 4 Ireland
| |
Collapse
|
18
|
Ha JW, Kang DH. Synergistic bactericidal effect of simultaneous near-infrared radiant heating and UV radiation against Cronobacter sakazakii in powdered infant formula. Appl Environ Microbiol 2014; 80:1858-63. [PMID: 24413596 PMCID: PMC3957628 DOI: 10.1128/aem.03825-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/02/2014] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the synergistic bactericidal effects of the simultaneous application of near-infrared (NIR) heating and UV irradiation against Cronobacter sakazakii in powdered infant formula and to determine the effect on quality by measuring color changes and performing sensory evaluation. A cocktail of C. sakazakii strains was inoculated into powdered infant formula, followed by NIR, UV, and combined NIR-UV treatments. The sum of NIR and UV inactivation was lower than that obtained by the simultaneous application of both technologies due to their synergism. Simultaneous NIR-UV combined treatment for 7 min achieved a 2.79-log-unit CFU reduction of C. sakazakii. The underlying inactivation mechanisms of the combined NIR-UV treatment were evaluated by the propidium iodide (PI) uptake test, and we confirmed that disruption of the bacterial cell membrane was the main factor contributing to the synergistic lethal effect. The color values and sensory characteristics of simultaneously NIR-UV-treated infant formula powder were not significantly (P > 0.05) different from those of the control. The results of this study suggest that a NIR-UV decontaminating system can be applied as an alternative to other interventions in powdered weaning foods.
Collapse
Affiliation(s)
- Jae-Won Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Institute of GreenBio Science and Technology, Seoul National University, Seoul, South Korea
| | | |
Collapse
|