1
|
Li M, Yin Y, Yu H, Yuan Y, Liu X. Early Warning Potential of Banana Spoilage Based on 3D Fluorescence Data of Storage Room Gas. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02691-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
2
|
Beć KB, Grabska J, Huck CW. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal Chim Acta 2020; 1133:150-177. [PMID: 32993867 DOI: 10.1016/j.aca.2020.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Infrared (IR; or mid-infrared, MIR; 4000-400 cm-1; 2500-25,000 nm) spectroscopy has become one of the most powerful and versatile tools at the disposal of modern bioscience. Because of its high molecular specificity, applicability to wide variety of samples, rapid measurement and non-invasivity, IR spectroscopy forms a potent approach to elucidate qualitative and quantitative information from various kinds of biological material. For these reasons, it became an established bioanalytical technique with diverse applications. This work aims to be a comprehensive and critical review of the recent accomplishments in the field of biomolecular and bioanalytical IR spectroscopy. That progress is presented on a wider background, with fundamental characteristics, the basic principles of the technique outlined, and its scientific capability directly compared with other methods being used in similar fields (e.g. near-infrared, Raman, fluorescence). The article aims to present a complete examination of the topic, as it touches the background phenomena, instrumentation, spectra processing and data analytical methods, spectra interpretation and related information. To suit this goal, the article includes a tutorial information essential to obtain a thorough perspective of bio-related applications of the reviewed methodologies. The importance of the fundamental factors to the final performance and applicability of IR spectroscopy in various areas of bioscience is explained. This information is interpreted in critical way, with aim to gain deep understanding why IR spectroscopy finds extraordinarily intensive use in this remarkably diverse and dynamic field of research and utility. The major focus is placed on the diversity of the applications in which IR biospectroscopy has been established so far and those onto which it is expanding nowadays. This includes qualitative and quantitative analytical spectroscopy, spectral imaging, medical diagnosis, monitoring of biophysical processes, and studies of physicochemical properties and dynamics of biomolecules. The application potential of IR spectroscopy in light of the current accomplishments and the future prospects is critically evaluated and its significance in the progress of bioscience is comprehensively presented.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| |
Collapse
|
3
|
Beć KB, Grabska J, Bonn GK, Popp M, Huck CW. Principles and Applications of Vibrational Spectroscopic Imaging in Plant Science: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1226. [PMID: 32849759 PMCID: PMC7427587 DOI: 10.3389/fpls.2020.01226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
Detailed knowledge about plant chemical constituents and their distributions from organ level to sub-cellular level is of critical interest to basic and applied sciences. Spectral imaging techniques offer unparalleled advantages in that regard. The core advantage of these technologies is that they acquire spatially distributed semi-quantitative information of high specificity towards chemical constituents of plants. This forms invaluable asset in the studies on plant biochemical and structural features. In certain applications, non-invasive analysis is possible. The information harvested through spectral imaging can be used for exploration of plant biochemistry, physiology, metabolism, classification, and phenotyping among others, with significant gains for basic and applied research. This article aims to present a general perspective about vibrational spectral imaging/micro-spectroscopy in the context of plant research. Within the scope of this review are infrared (IR), near-infrared (NIR) and Raman imaging techniques. To better expose the potential and limitations of these techniques, fluorescence imaging is briefly overviewed as a method relatively less flexible but particularly powerful for the investigation of photosynthesis. Included is a brief introduction to the physical, instrumental, and data-analytical background essential for the applications of imaging techniques. The applications are discussed on the basis of recent literature.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- *Correspondence: Krzysztof B. Beć, ; Christian W. Huck,
| | - Justyna Grabska
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | - Günther K. Bonn
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- ADSI, Austrian Drug Screening Institute, Innsbruck, Austria
| | - Michael Popp
- Michael Popp Research Institute for New Phyto Entities, University of Innsbruck, Innsbruck, Austria
| | - Christian W. Huck
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- *Correspondence: Krzysztof B. Beć, ; Christian W. Huck,
| |
Collapse
|
4
|
Pu H, Lin L, Sun D. Principles of Hyperspectral Microscope Imaging Techniques and Their Applications in Food Quality and Safety Detection: A Review. Compr Rev Food Sci Food Saf 2019; 18:853-866. [DOI: 10.1111/1541-4337.12432] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Hongbin Pu
- School of Food Science and EngineeringSouth China Univ. of Technology Guangzhou 510641 China
- Academy of Contemporary Food EngineeringSouth China Univ. of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Lian Lin
- School of Food Science and EngineeringSouth China Univ. of Technology Guangzhou 510641 China
- Academy of Contemporary Food EngineeringSouth China Univ. of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Da‐Wen Sun
- School of Food Science and EngineeringSouth China Univ. of Technology Guangzhou 510641 China
- Academy of Contemporary Food EngineeringSouth China Univ. of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou 510006 China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science CentreUniv. College Dublin, National Univ. of Ireland Belfield, Dublin 4 Dublin Ireland
| |
Collapse
|
5
|
Kelly SJ, Wells HC, Sizeland KH, Kirby N, Edmonds RL, Ryan T, Hawley A, Mudie S, Haverkamp RG. Artificially modified collagen fibril orientation affects leather tear strength. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3524-3531. [PMID: 29288543 DOI: 10.1002/jsfa.8863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ovine leather has around half the tear strength of bovine leather and is therefore not suitable for high-value applications such as shoes. Tear strength has been correlated with the natural collagen fibril alignment (orientation index, OI). It is hypothesized that it could be possible to artificially increase the OI of the collagen fibrils and that an artificial increase in OI could increase tear strength. RESULTS Ovine skins, after pickling and bating, were strained biaxially during chrome tanning. The strain ranged from 2 to 15% of the initial sample length, either uniformly in both directions by 10% or with 3% in one direction and 15% in the other. Once tanned, the leather tear strengths were measured and the collagen fibril orientation was measured using synchrotron-based small-angle X-ray scattering. CONCLUSION The OI increased as a result of strain during tanning from 0.48 to 0.79 (P = 0.001) measured edge-on and the thickness-normalized tear strength increased from 27 to 43 N mm-1 (P < 0.001) after leather was strained 10% in two orthogonal directions. This is evidence to support a causal relationship between high OI (measured edge-on), highly influenced by thickness, and tear strength. It also provides a method to produce stronger leather. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susyn J Kelly
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Hannah C Wells
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Katie H Sizeland
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
- Australian Synchrotron, Clayton, Victoria, Australia
| | - Nigel Kirby
- Australian Synchrotron, Clayton, Victoria, Australia
| | - Richard L Edmonds
- Leather and Shoe Research Association, Palmerston North, New Zealand
| | - Tim Ryan
- Australian Synchrotron, Clayton, Victoria, Australia
| | - Adrian Hawley
- Australian Synchrotron, Clayton, Victoria, Australia
| | - Stephen Mudie
- Australian Synchrotron, Clayton, Victoria, Australia
| | - Richard G Haverkamp
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Fluorescence Spectroscopy for the Monitoring of Food Processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 161:121-151. [PMID: 28424827 DOI: 10.1007/10_2017_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Different analytical techniques have been used to examine the complexity of food samples. Among them, fluorescence spectroscopy cannot be ignored in developing rapid and non-invasive analytical methodologies. It is one of the most sensitive spectroscopic approaches employed in identification, classification, authentication, quantification, and optimization of different parameters during food handling, processing, and storage and uses different chemometric tools. Chemometrics helps to retrieve useful information from spectral data utilized in the characterization of food samples. This contribution discusses in detail the potential of fluorescence spectroscopy of different foods, such as dairy, meat, fish, eggs, edible oil, cereals, fruit, vegetables, etc., for qualitative and quantitative analysis with different chemometric approaches.
Collapse
|
7
|
Zettel V, Ahmad MH, Beltramo T, Hermannseder B, Hitzemann A, Nache M, Paquet-Durand O, Schöck T, Hecker F, Hitzmann B. Supervision of Food Manufacturing Processes Using Optical Process Analyzers - An Overview. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201600013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
A fluorescence spectroscopic approach to predict analytical, rheological and baking parameters of wheat flours using chemometrics. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zettel V, Ahmad MH, Hitzemann A, Nache M, Paquet-Durand O, Schöck T, Hecker F, Hitzmann B. Optische Prozessanalysatoren für die Lebensmittelindustrie. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201500097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Tsuta M. Research on Using Fluorescence Fingerprints for the Evaluation of Food Quality. J JPN SOC FOOD SCI 2016. [DOI: 10.3136/nskkk.63.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mizuki Tsuta
- Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|