1
|
Dhar R, Chakraborty S. Effect of continuous microwave processing on enzymes and quality attributes of bael beverage. Food Chem 2024; 453:139621. [PMID: 38761728 DOI: 10.1016/j.foodchem.2024.139621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Bael (Aegle marmelos) beverage was pasteurized using continuous-microwave (MW) and traditional thermal processing and the activity of native enzymes, pulp-hydrolyzing enzymes, bioactive, physicochemical, and sensory properties were analyzed. First-order and linear biphasic models fitted well (R2 ≥ 0.90) for enzyme inactivation and bioactive alteration kinetics, respectively. For the most resistant enzyme, polyphenoloxidase (PPO), the inactivation target of ≥ 90 % was achieved at 90 °C TMW (final temperature under MW) and 95 °C for 5 min (conventional thermal). MW treatment displayed faster enzyme inactivation and better retention of TPC and AOC. MW treatment at 90 °C TMW showed 5.3 min D-value, 90% total carotenoid content, 3.42 crisp sensory score (out of 5), and no or minor change in physicochemical attributes. Thermal and MW treatment caused the loss of 14 and 10 bioactive compounds, respectively. The secondary and tertiary structural modifications of PPO enzyme-protein revealed MW's lethality primarily due to its thermal effects.
Collapse
Affiliation(s)
- Rishab Dhar
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra 400019, India
| | - Snehasis Chakraborty
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
2
|
Jha A, Mishra S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int J Biol Macromol 2024; 275:133613. [PMID: 38960223 DOI: 10.1016/j.ijbiomac.2024.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/02/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Environmental pollution remains a constant challenge due to the indiscriminate use of fossil fuels, mining activities, chemicals, drugs, aromatic compounds, pesticides, etc. Many emerging pollutants with no fixed standards for monitoring and control are being reported. These have adverse impacts on human life and the environment around us. This alarms the wastewater management towards developing materials that can be used for bulk water treatment and are easily available, low cost, non-toxic and biodegradable. Waste biomass like pectin is extracted from fruit peels which are a discarded material. It is used in pharmaceutical and nutraceutical applications but its application as a material for water treatment is very limited in literature. The scientific gap in literature review reports are evident with discussion only on pectin based hydrogels or specific pectin derivatives for some applications. This review focuses on the chemistry, extraction, functionalization and production of pectin derivatives and their applications in water treatment processes. Pectin functionalized derivatives can be used as a flocculant, adsorbent, nano biopolymer, biochar, hybrid material, metal-organic frameworks, and scaffold for the removal of heavy metals, ions, toxic dyes, and other contaminants. The huge quantum of pectin biomass may be explored further to strengthen environmental sustainability and circular economy practices.
Collapse
Affiliation(s)
- Adya Jha
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
3
|
Decoupling thermal effects and possible non-thermal effects of microwaves in vacuum evaporation of glucose solutions. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Zhou D, Yang G, Tian Y, Kang J, Wang S. Different effects of radio frequency and heat block treatments on multi-scale structure and pasting properties of maize, potato, and pea starches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Hot-Air Flow Rolling Dry-Blanching Pretreatment Improves the Drying Quality of Acanthopanax sessiliflorus by Increasing the Drying Rate and Inactivating Enzymes. Foods 2022. [PMCID: PMC9601497 DOI: 10.3390/foods11203186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The processing of Acanthopanax sessiliflorus has attracted interest due to its health benefits. In this work, an emerging blanching technology, called hot-air flow rolling dry-blanching (HMRDB), was employed to treat A. sessiliflorus before drying. The effects of varied blanching times (2–8 min) on enzyme inactivation, drying characteristics, bioactive compound retention, and microstructure were examined. The results demonstrated that blanching for 8 min rendered polyphenol oxidase and peroxidase nearly inactive. The blanching process reduced the drying time of samples by up to 57.89% compared to an unblanched sample. The Logarithmic model showed good fitting performance for the drying curves. The total phenolic and flavonoid content of the dried product increased as blanching time increased. The total anthocyanin content of the samples blanched for 6 min was 3.9 times higher than that of the unblanched samples, and 8 min of blanching produced the greatest DPPH• and ABTS• scavenging capabilities. The retention of active compounds in a dried product is a result of the inactivation of enzymes and a reduced drying period. Changes in the porous structure of the blanched samples would be responsible for the accelerated drying rate, according to microstructural analysis. These results indicate that HMRDB enhances the drying process and improves drying quality when applied to A. sessiliflorus before drying.
Collapse
|
6
|
Abea A, Gou P, Guàrdia MD, Picouet P, Kravets M, Bañón S, Muñoz I. Dielectric Heating: A Review of Liquid Foods Processing Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2092746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Andres Abea
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| | - Pere Gou
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| | | | - Pierre Picouet
- USC 1422 GRAPPE, INRA, Ecole Supérieure d’Agricultures, Univ. Bretagne Loire, Angers, France
| | - Marina Kravets
- Department of Food Science and Technology and Nutrition, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Sancho Bañón
- Department of Food Science and Technology and Nutrition, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Israel Muñoz
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| |
Collapse
|
7
|
Inactivation of Endogenous Pectin Methylesterases by Radio Frequency Heating during the Fermentation of Fruit Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pectin methylesterase (PME) is a methyl ester group hydrolytic enzyme of either plant or microbial origin. Importantly, endogenous PMEs in fruits can catalyze the demethoxylation of pectin with a bulk release of methanol, largely impacting the fruit juice and wine industries. Here, we demonstrated radio frequency (RF) heating for inactivation of endogenous PMEs and investigated the relevant mechanisms underpinning enzymatic inactivation. The RF heating curve indicated that the optimal heating rate was achieved at an electrode gap of 90 mm (compared to 100 mm and 110 mm) and that the inactivation rate of the enzyme increases with heating time. RF heating exhibited better effects on enzymatic inactivation than traditional water heating, mainly by changing the secondary structures of PMEs, including α-helix, β-sheet, β-turn, and random coil. Moreover, fluorescence spectroscopy indicated changes in the tertiary structure with a significant increase in fluorescence intensity. Significantly, application of RF heating for inactivation of PMEs resulted in a 1.5-fold decrease in methanol during the fermentation of jujube wine. Collectively, our findings demonstrated an effective approach for inactivating endogenous PMEs during the bioprocesses of fruits.
Collapse
|
8
|
Infrared and Microwave as a dry blanching tool for Irish potato: Product quality, cell integrity, and artificial neural networks (ANNs) modeling of enzyme inactivation kinetic. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Response to "Non-thermal microwave effects: Conceptual and methodological problems". Food Chem 2022; 390:133216. [PMID: 35594767 DOI: 10.1016/j.foodchem.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
The objective of this response letter is to expose the reader of Food Chemistry to the most recent advances and discussions about non-thermal effects of microwaves on microorganisms and enzymes. Although these effects showed to be too subtle for any practical use in food processing, experimental and molecular dynamics studies bring evidences that electric fields at low frequencies or with high intensity can have non-thermal effects, such as activity changes in enzymes during ohmic processing or electroporation of cells in pulsed electric field processing. This brief review broadens the scope of this controversial topic to show that innovative experiments and simulations are collaborating with the advance of emerging electro technologies in food processing. .
Collapse
|
10
|
Gou D, Huang K, Liu Y, Shi H, Wu Z. Investigation of Spatial Orientation and Kinetic Energy of Reactive Site Collision between Benzyl Chloride and Piperidine: Novel Insight into the Microwave Nonthermal Effect. J Phys Chem A 2022; 126:2690-2705. [PMID: 35447029 DOI: 10.1021/acs.jpca.2c01487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microwave nonthermal effect in chemical reactions is still an uncertain problem. In this work, we have studied the spatial orientation and kinetic energy of reactive site collision between benzyl chloride and piperidine molecules in substitution reaction under microwave irradiation using the molecular dynamics simulation. Our results showed that microwave polarization can change the spatial orientation of reactive site collision. Collision probability between the Cl atom of the C-Cl group of benzyl chloride and the H atom of the N-H group of piperidine increased by up to 33.5% at an effective spatial solid angle (θ, φ) of (100∼110°, 170∼190°) under microwave irradiation. Also, collision probability between the C atom of the C-Cl group of benzyl chloride and the N atom of the N-H group of piperidine also increased by up to 25.6% at an effective spatial solid angle (θ, φ) of (85∼95°, 170∼190°). Moreover, the kinetic energy of collision under microwave irradiation was also changed, that is, for the collision between the Cl atom of the C-Cl group and the H atom of the N-H group, the fraction of high-energy collision greater than 6.39 × 10-19 J increased by 45.9 times under microwave irradiation, and for the collision between the C atom of the C-Cl group and the N atom of the N-H group, the fraction of high-energy collision greater than 6.39 × 10-19 J also increased by 29.2 times. Through simulation, the reaction rate increased by 34.4∼50.3 times under microwave irradiation, which is close to the experimental increase of 46.3 times. In the end, spatial orientation and kinetic energy of molecular collision changed by microwave polarization are summarized as the microwave postpolarization effect. This effect provides a new insight into the physical mechanism of the microwave nonthermal effect.
Collapse
Affiliation(s)
- Dezhi Gou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Liu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Hongxiao Shi
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiyan Wu
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Wang F, Liu Y, Du C, Gao R. Current Strategies for Real-Time Enzyme Activation. Biomolecules 2022; 12:biom12050599. [PMID: 35625527 PMCID: PMC9139169 DOI: 10.3390/biom12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Enzyme activation is a powerful means of achieving biotransformation function, aiming to intensify the reaction processes with a higher yield of product in a short time, and can be exploited for diverse applications. However, conventional activation strategies such as genetic engineering and chemical modification are generally irreversible for enzyme activity, and they also have many limitations, including complex processes and unpredictable results. Recently, near-infrared (NIR), alternating magnetic field (AMF), microwave and ultrasound irradiation, as real-time and precise activation strategies for enzyme analysis, can address many limitations due to their deep penetrability, sustainability, low invasiveness, and sustainability and have been applied in many fields, such as biomedical and industrial applications and chemical synthesis. These spatiotemporal and controllable activation strategies can transfer light, electromagnetic, or ultrasound energy to enzymes, leading to favorable conformational changes and improving the thermal stability, stereoselectivity, and kinetics of enzymes. Furthermore, the different mechanisms of activation strategies have determined the type of applicable enzymes and manipulated protocol designs that either immobilize enzymes on nanomaterials responsive to light or magnetic fields or directly influence enzymatic properties. To employ these effects to finely and efficiently activate enzyme activity, the physicochemical features of nanomaterials and parameters, including the frequency and intensity of activation methods, must be optimized. Therefore, this review offers a comprehensive overview related to emerging technologies for achieving real-time enzyme activation and summarizes their characteristics and advanced applications.
Collapse
|
12
|
Study the synergism of microwave thermal and non-thermal effects on microbial inactivation and fatty acid quality of salmon fillet during pasteurization process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Do non-thermal effects exist in microwave heating of glucose aqueous solutions? Evidence from molecular dynamics simulations. Food Chem 2021; 375:131677. [PMID: 34865928 DOI: 10.1016/j.foodchem.2021.131677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
The existence of microwave non-thermal effects in food processing is still debated. In this study, molecular dynamics (MD) simulations were performed to investigate the conformation, electrostatic profiles, and intramolecular hydrogen bonds (intra-HB) of glucose in aqueous solution under alternating electric fields of microwaves ranging from 0 to 109 V/m at 2.45 GHz. The results showed a field-induced threshold of 109 V/m. At the threshold, alternating microwaves reoriented the flexible moieties and thus enhanced the intra-HB. The conformational transition among gg, gt, and tg conformers at 109 V/m possibly resulted from the uneven electrostatic potential and the increased intra-HB. In practice, the maximum electric field of microwaves is several times weaker than the threshold, verifying the absence of microwave non-thermal effects for glucose molecules in food processing. This study provides a novel strategy to evaluate the potential non-thermal effects of microwaves in food processing and the related underlying food safety issues.
Collapse
|
14
|
Habuš M, Golubić P, Vukušić Pavičić T, Čukelj Mustač N, Voučko B, Herceg Z, Ćurić D, Novotni D. Influence of Flour Type, Dough Acidity, Printing Temperature and Bran Pre-processing on Browning and 3D Printing Performance of Snacks. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02732-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Lalou S, Ordoudi SA, Mantzouridou FT. On the Effect of Microwave Heating on Quality Characteristics and Functional Properties of Persimmon Juice and Its Residue. Foods 2021; 10:2650. [PMID: 34828930 PMCID: PMC8624191 DOI: 10.3390/foods10112650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, it was investigated whether integration of microwave-heating into the pretreatment step of persimmon juice processing allows the concomitant production of both functional juice and added-value solid residue from the Diospyros Kaki "Jiro" cultivar. In this direction, persimmon pulp was treated under three different microwave-heating conditions (0.7, 4.2, and 8.4 kJ/g) prior to enzymatic maceration and compared to the non-heated material. Irrespective of microwave energy employed, the proposed hybrid treatment was highly efficient in terms of juice yield (70% w/w). The mildest heating conditions resulted in juice and residue that were both of inferior quality. Intensification of the microwave energy reduced the microbial load of the juice up to 2-log without compromising the content in total soluble solids, sugars, and L-ascorbic acid. Under the most drastic conditions, the juice was enriched in gallic acid, polyphenols, and potent DPPH● scavengers, but its orange color faded and was more acidic. In parallel, the solid juice residue retained pro-vitamin A carotenoids (~278 µg retinol activity equivalents) and low-methoxy pectin (9 g/100 g DW). Overall, our findings can assist the efforts of the local juice processing industry to utilize persimmon fruits through energy-efficient technologies in a sustainable approach.
Collapse
Affiliation(s)
- Sofia Lalou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stella A. Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Fani Th. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
16
|
Hu L, Wang Y, Guo C, Lai K, Luan D. Exploring the microwave non‐thermal effects on the fatty acid composition of Atlantic salmon (
Salmo salar
) during pasteurization using the same time–temperature profiles method. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leiqi Hu
- Engineering Research Center of Food Thermal‐Processing Technology Shanghai Ocean University Shanghai China
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Yifen Wang
- Biosystems Engineering Department Auburn University Auburn AL USA
| | - Changkai Guo
- Engineering Research Center of Food Thermal‐Processing Technology Shanghai Ocean University Shanghai China
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Keqiang Lai
- Engineering Research Center of Food Thermal‐Processing Technology Shanghai Ocean University Shanghai China
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Donglei Luan
- Engineering Research Center of Food Thermal‐Processing Technology Shanghai Ocean University Shanghai China
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| |
Collapse
|
17
|
The optimal time-temperature conditions for orange juice microwave−assisted pasteurization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Xue Q, Xue C, Luan D, Wen Y, Bi S, Wei Z, Mou H. Comprehensive investigation into quality of pasteurized Oncorhynchus keta Walbaum fillets and non-thermal effects of microwave. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Pinto RO, do Nascimento RB, Jermolovicius LA, Jurkiewicz C, Gut JA, Pinto UM, Landgraf M. Microbiological feasibility of microwave processing of coconut water. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Devi AF, Au XN, Weerakkody R, Sanguansri P, Swiergon P, Singh T, Ng S, V. Gamage T. Microwave Pasteurised Pear Snack: Quality and Microbiological Stability. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02642-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
|
22
|
Guo C, Wang Y, Luan D. Non-thermal effects of microwave processing on inactivation of Clostridium Sporogenes inoculated in salmon fillets. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109861] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Costa HCDB, Siguemoto ÉS, Cavalcante TABB, de Oliveira Silva D, Vieira LGM, Gut JAW. Effect of microwave-assisted processing on polyphenol oxidase and peroxidase inactivation kinetics of açai-berry (Euterpe oleracea) pulp. Food Chem 2020; 341:128287. [PMID: 33059272 DOI: 10.1016/j.foodchem.2020.128287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Microwave heating has been considered a promising technology for continuous flow thermal processing of fluid foods due to better retention of quality. Considering the importance of açai-berry pulp and its perishability, the inactivation kinetics of peroxidase (POD) and polyphenol oxidase (PPO) were investigated under conventional and microwave heating. First-order two-component model was well fitted to the data, indicating the presence of at least two fractions with different resistances. POD was more thermally resistant (90% inactivation for 40 s at 89 °C) and could be considered as a processing target. Inactivation curves dependency on heating technology suggests specific effects of microwaves on the protein structure. Additionally, the dielectric properties of açai-berry pulp were evaluated at 915 and 2,450 MHz for temperatures up to 120 °C. Power penetration depth dropped with temperature at 915 MHz (from 29 to 11 mm), but was less affected at 2,450 MHz (between 8 and 11 mm).
Collapse
Affiliation(s)
- Henrique Coutinho de Barcelos Costa
- Department of Food Engineering. Universidade Federal de São João del Rei, Sete Lagoas, Brazil; School of Chemical Engineering. Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Érica Sayuri Siguemoto
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Jorge Andrey Wilhelms Gut
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil; FoRC - Food Research Center, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Kubo MTK, Siguemoto ÉS, Funcia ES, Augusto PED, Curet S, Boillereaux L, Sastry SK, Gut JAW. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Effect of Electric Field on Pectinesterase Inactivation During Orange Juice Pasteurization by Ohmic Heating. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
|
27
|
Effect of Applied Voltage on the Aggregation and Conformational Changes in Peroxidase Under Electrospray. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02390-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Nguyen T, Nguyen P, Luu X, Huynh B, Krishnan S, Huynh PT. Kinetics of nutrient change and color retention during low‐temperature microwave‐assisted drying of bitter melon (
Momordica charantia
L.). J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thi‐Van‐Linh Nguyen
- Faculty of Environmental and Food Engineering Nguyen Tat Thanh University Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering HCMC University of Technology Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Phuoc‐Bao‐Duy Nguyen
- Faculty of Electrical and Electronics Engineering Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Xuan‐Cuong Luu
- Faculty of Environmental and Food Engineering Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Bao‐Long Huynh
- Faculty of Chemical Engineering Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Sitaraman Krishnan
- Department of Chemical and Biomolecular Engineering Clarkson University Potsdam NY USA
| | - Phong T. Huynh
- Faculty of Chemical Engineering HCMC University of Technology Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
- Department of Chemical and Biomolecular Engineering Clarkson University Potsdam NY USA
| |
Collapse
|
29
|
Han YX, Cheng JH, Sun DW. Changes in activity, structure and morphology of horseradish peroxidase induced by cold plasma. Food Chem 2019; 301:125240. [DOI: 10.1016/j.foodchem.2019.125240] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022]
|
30
|
Zhou L, Liao T, Liu J, Zou L, Liu C, Liu W. Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02354-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Siguemoto ÉS, Purgatto E, Hassimotto NM, Gut JA. Comparative evaluation of flavour and nutritional quality after conventional and microwave-assisted pasteurization of cloudy apple juice. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Brugos AF, Gut JA, Tadini CC. Inactivation kinetics of pectin methyl esterase in the microwave-assisted pasteurization of orange juice. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Siguemoto ÉS, Pires MN, Funcia EDS, Gut JAW. Evaluation and modeling of a microwave‐assisted unit for continuous flow pasteurization of liquid foods: Residence time distribution, time–temperature history, and integrated lethality. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Érica Sayuri Siguemoto
- Department of Chemical Engineering, Escola PolitécnicaUniversity of São Paulo São Paulo Brazil
| | - Marcos Neves Pires
- Department of Chemical Engineering, Escola PolitécnicaUniversity of São Paulo São Paulo Brazil
| | | | - Jorge Andrey Wilhelms Gut
- Department of Chemical Engineering, Escola PolitécnicaUniversity of São Paulo São Paulo Brazil
- FoRC—Food Research CenterUniversity of São Paulo São Paulo Brazil
| |
Collapse
|
34
|
Siguemoto ÉS, Funcia EDS, Pires MN, Gut JAW. Modeling of time-temperature history and enzymatic inactivation of cloudy apple juice in continuous flow microwave assisted pasteurization. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|