1
|
Sardella C, Capo L, Adamo M, Donna M, Ravetto Enri S, Vanara F, Lonati M, Mucciarelli M, Blandino M. The cultivation of rye in marginal Alpine environments: a comparison of the agronomic, technological, health and sanitary traits of local landraces and commercial cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1130543. [PMID: 37235035 PMCID: PMC10208067 DOI: 10.3389/fpls.2023.1130543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 05/28/2023]
Abstract
Rye is a secondary crop that is characterized by a higher tolerance to climatically less favorable conditions than other cereal species. For this reason, rye was historically used as a fundamental raw material for bread production and as a supply of straw in northern parts of Europe as well as in mountain environments, such as Alpine valleys, where locally adapted landraces have continued to be cultivated over the years. In this study, rye landraces collected in different valleys in the Northwest Italian Alps have been selected as the most genetically isolated within their geographical contexts and cultivated in two different marginal Alpine environments. The traits concerning their agronomy, mycotoxin contamination, bioactive content, as well as their technological and baking quality were assessed to characterize and compare rye landraces with commercial wheat and rye cultivars. Rye cultivars showed the same grain yield level as wheat in both environments. Only the genotype selected from the Maira Valley was characterized by tall and thin culms and a proneness to lodging, thereby resulting in a lower yield capacity. Among the rye cultivars, the hybrid one presented the highest yield potential, but also the highest susceptibility to the occurrence of ergot sclerotia. However, the rye cultivars, especially the landraces, were characterized by higher concentrations of minerals, soluble fibers, and soluble phenolic acids, and thus both their flours and breads had superior antioxidant properties. A 40% substitution of refined wheat flour with whole-grain rye flour led to a higher dough water absorption and a lower stability, thereby resulting in lower loaf volumes and darker products. Agronomically and qualitatively speaking, the rye landraces diverged significantly from the conventional rye cultivars, thus reflecting their genetic distinctiveness. The landrace from the Maira Valley shared a high content in phenolic acids and good antioxidant properties with the one from the Susa Valley and, when combined with wheat flour, turned out to be the most suitable for bread making. Overall, the results have highlighted the suitability of reintroducing historic rye supply chains, based on the cultivation of local landraces in marginal environments and the production of value-added bakery goods.
Collapse
Affiliation(s)
- Claudia Sardella
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Luca Capo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Martino Adamo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Matteo Donna
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Simone Ravetto Enri
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Francesca Vanara
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Michele Lonati
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Marco Mucciarelli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo Blandino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system – A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Fortification of Wheat Bread with Edible Chrysanthemum (Chrysanthemum morifolium Ramat.): Unraveling the Mechanisms of Dough Rheology and Bread Quality Changes. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Jaksics E, Németh R, Farkas A, Horváth R, Dúzs D, Drozdik ÁA, Csányi B, Bidló G, Simon K, Tömösközi S. Comparative compositional and functional characterisation of rye varieties and novel industrial milling fractions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Edina Jaksics
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Műegyetem rkp.3. 1111 Budapest Hungary
| | - Renáta Németh
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Műegyetem rkp.3. 1111 Budapest Hungary
| | - Alexandra Farkas
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Műegyetem rkp.3. 1111 Budapest Hungary
| | - Réka Horváth
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Műegyetem rkp.3. 1111 Budapest Hungary
| | - Dániel Dúzs
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Műegyetem rkp.3. 1111 Budapest Hungary
| | - Álmos Attila Drozdik
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Műegyetem rkp.3. 1111 Budapest Hungary
| | - Brigitta Csányi
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Műegyetem rkp.3. 1111 Budapest Hungary
| | - Gábor Bidló
- First Pest Mill and Bakery Ltd. Malom köz 7 2170 Aszód Hungary
| | - Katalin Simon
- First Pest Mill and Bakery Ltd. Malom köz 7 2170 Aszód Hungary
| | - Sándor Tömösközi
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Műegyetem rkp.3. 1111 Budapest Hungary
| |
Collapse
|
5
|
Fanari F, Carboni G, Desogus F, Grosso M, Wilhelm M. A Chemometric Approach to Assess the Rheological Properties of Durum Wheat Dough by Indirect FTIR Measurements. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractRheological measurements and FTIR spectroscopy were used to characterize different doughs, obtained by commercial and monovarietal durum wheat flours (Cappelli and Karalis). Rheological frequency sweep tests were carried out, and the Weak Gel model, whose parameters may be related to gluten network extension and strength, was applied. IR analysis mainly focused on the Amide III band, revealing significant variations in the gluten network. Compared to the other varieties, Karalis semolina showed a higher amount of α-helices and a lower amount of β-sheets and random structures. Spectroscopic and rheological data were then correlated using Partial Least Squares regression (PLS) coupled with the Variable Importance in Projection (VIP) technique. The combined use of the techniques provided useful insights into the interplay among protein structures, gluten network features, and rheological properties. In detail, β-sheets and α-helices protein conformations were shown to significantly affect the gluten network's mechanical strength.
Collapse
|
6
|
Bharathi R, Dai Y, Tyl C, Schoenfuss T, Annor G. The effect of tempering on protein properties and arabinoxylan contents of intermediate wheatgrass (
Thinopyrum intermedium
) flour. Cereal Chem 2021. [DOI: 10.1002/cche.10505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Radhika Bharathi
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| | - Yaxi Dai
- Department of Food Science and Technology University of Georgia Athens Georgia USA
| | - Catrin Tyl
- Department of Food Science and Technology University of Georgia Athens Georgia USA
| | - Tonya Schoenfuss
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| | - George Amponsah Annor
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| |
Collapse
|
7
|
Németh R, Tömösközi S. Rye: Current state and future trends in research and applications. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
After wheat, rye is the second most important raw material for bread and bakery products, and it is one of the most excellent sources of dietary fibres and bioactive compounds. Besides, rye is utilised in more and more other food products as well, such as breakfast cereals, porridges, pasta, snack products, etc. Interestingly, its production is decreasing worldwide, probably because of the expansion of other cereals (e.g. triticale), but also the effect of climate change can also play a role therein. However, there is no doubt that scientific research aimed at studying the possible health benefits and the potential of rye in the development of novel food products has intensified over the past decade.
The aim of our paper is to make a comprehensive review of the latest results on the compositional and technological properties of rye that fundamentally influence its utilisation for food purposes. Furthermore, this review aims to identify the current development directions and trends of rye products.
Collapse
Affiliation(s)
- R. Németh
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| | - S. Tömösközi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| |
Collapse
|
8
|
Meeus Y, Janssen F, Wouters AG, Delcour JA, Moldenaers P. The role of arabinoxylan in determining the non-linear and linear rheology of bread doughs made from blends of wheat (Triticum aestivum L.) and rye (Secale cereale L.) flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass ( Thinopyrum intermedium) Bread. Foods 2021; 10:foods10071464. [PMID: 34202754 PMCID: PMC8303953 DOI: 10.3390/foods10071464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Previous work indicated that bran removal promotes network formation in breads prepared from intermediate wheatgrass (IWG) flour. However, refinement reduces yields as well as contents of nutritionally beneficial compounds such as fiber. This study evaluated xylanase pretreatment of IWG bran as a processing option to enhance the properties of bread made with half of the original bran content. Xylanase pretreatment did not affect stickiness but significantly reduced hardness and increased specific loaf volumes compared to negative (without xylanase) and positive controls (with xylanase but without pretreatment). However, the surface of breads with pretreated bran was uneven due to structural collapse during baking. Fewer but larger gas cells were present due to pretreatment. Addition of ascorbic acid modulated these effects, but did not prevent uneven surfaces. Accessible thiol concentrations were slightly but significantly increased by xylanase pretreatment, possibly due to a less compact crumb structure. Endogenous xylanases (apparent activity 0.46 and 5.81 XU/g in flour and bran, respectively) may have been activated during the pretreatment. Moreover, Triticum aestivum xylanase inhibitor activity was also detected (193 and 410 InU/g in flour and bran). Overall, xylanase pretreatment facilitates incorporation of IWG bran into breads, but more research is needed to improve bread appearance.
Collapse
|
10
|
Janssen F, Wouters AGB, Delcour JA. Gas cell stabilization by aqueous-phase constituents during bread production from wheat and rye dough and oat batter: Dough or batter liquor as model system. Compr Rev Food Sci Food Saf 2021; 20:3881-3917. [PMID: 34056854 DOI: 10.1111/1541-4337.12761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023]
Abstract
Proper gas cell stability during fermentation and baking is essential to obtain high-quality bread. Gas cells in wheat dough are stabilized by the gluten network formed during kneading and, from the moment this network locally ruptures, by liquid films containing nonstarch polysaccharides (NSPs) and surface-active proteins and lipids. Dough liquor (DL), the supernatant after ultracentrifugation of dough, is a model system for these liquid films and has been extensively studied mostly in the context of wheat bread making. Nonwheat breads are often of lower quality (loaf volume and crumb structure) than wheat breads because their doughs/batters lack a viscoelastic wheat gluten network. Therefore, gas cell stabilization by liquid film constituents may be more important in nonwheat than in wheat bread making. This manuscript aims to review the knowledge on DL/batter liquor (BL) and its relevance for studying gas cell stabilization in wheat and nonwheat (rye and oat) bread making. To this end, the unit operations in wheat, rye, and oat bread making are described with emphasis on gas incorporation and gas cell (de)stabilization. A discussion of the knowledge on the recoveries and chemical structures of proteins, lipids, and NSPs in DLs/BLs is provided and key findings of studies dealing with foaming and air-water interfacial properties of DL/BL are discussed. Next, the extent to which DL/BL functionality can be related to bread properties is addressed. Finally, the extent to which DL/BL is a representative model system for the aqueous phase of dough/batter is discussed and related to knowledge gaps and further research opportunities.
Collapse
Affiliation(s)
- Frederik Janssen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
De Bondt Y, Hermans W, Moldenaers P, Courtin CM. Selective modification of wheat bran affects its impact on gluten-starch dough rheology, microstructure and bread volume. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|