1
|
Chen A, Wan F, Ma G, Ma J, Xu Y, Zang Z, Ying X, Jia H, Huang X. Radio Frequency Vacuum Drying Study on the Drying Characteristics and Quality of Cistanche Slices and Analysis of Heating Uniformity. Foods 2024; 13:2672. [PMID: 39272440 PMCID: PMC11487376 DOI: 10.3390/foods13172672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
To fully leverage the advantages of both hot air drying and radio frequency vacuum drying, a segmented combination drying technique was applied to post-harvest Cistanche. This new drying method involves using hot air drying in the initial stage to remove the majority of free water, followed by radio frequency vacuum drying in the later stage to remove the remaining small amount of free water and bound water. During the radio frequency vacuum drying (RFV) phase, the effects of temperature (45, 55, and 65 °C), vacuum pressure (0.020, 0.030, and 0.040 MPa), plate spacing (65, 75, and 85 mm), and slice thickness (4, 5, and 6 mm) on the drying characteristics, quality, and microstructure of Cistanche slices were investigated. Additionally, infrared thermal imaging technology was used to examine the surface temperature distribution of the material during the drying process. The results showed that compared to radio frequency vacuum drying alone, the hot air-radio frequency combined drying significantly shortened the drying time. Under conditions of lower vacuum pressure (0.020 MPa), plate spacing (65 mm), and higher temperature (65 °C), the drying time was reduced and the drying rate increased. Infrared thermal imaging revealed that in the early stages of hot air-radio frequency vacuum combined drying, the center temperature of Cistanche was higher than the edge temperature. As drying progressed, the internal moisture of the material diffused from the inside out, resulting in higher edge temperatures compared to the center and the formation of overheating zones. Compared to natural air drying, the hot air-radio frequency vacuum combined drying effectively preserved the content of active components such as polysaccharides (275.56 mg/g), total phenols (38.62 mg/g), total flavonoids (70.35 mg/g), phenylethanoid glycosides, and iridoids. Scanning electron microscopy observed that this combined drying method reduced surface collapse and cracking of the material. This study provides theoretical references for future drying processes of Cistanche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaopeng Huang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China; (A.C.); (F.W.); (G.M.); (J.M.); (Y.X.); (Z.Z.); (X.Y.); (H.J.)
| |
Collapse
|
2
|
Gao J, Cheng S, Zeng X, Sun X, Bai Y, Hu S, Yue J, Yu X, Zhang M, Xu X, Han M. Effects of contact ultrasound coupled with infrared radiation on drying kinetics, water migration and physical properties of beef during hot air drying. ULTRASONICS SONOCHEMISTRY 2024; 108:106978. [PMID: 38971086 PMCID: PMC11279329 DOI: 10.1016/j.ultsonch.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Drying, as a critical step in the production of air-dried beef, has a direct impact on the quality of the final product. Innovatively, a composite system incorporating contact ultrasound (CU) and infrared radiation (IR) as auxiliary measures within a hot air drying (HAD) framework was built in this research, and the effects of these techniques on the drying kinetics, protein denaturation, and moisture transformation of air-dried beef were investigated. In comparison to HAD treatment, the integrated CU and IR (CU-IRD) system displayed marked enhancements in heat and moisture transport efficiency, thereby saving 36.84% of time expenditure and contributing favorably to the improved moisture distribution of the end-product. This was mainly ascribed to the denaturation of myosin induced by IR thermal effect and the micro-channel produced by CU sponge effect, thus increasing T2 relaxation time and the proportion of free water. In conclusion, the composite system solved the problem of surface hardening and reduces hardness and chewiness of air-dried beef by 40.42% and 45.25% respectively, but inevitably increased the energy burden by 41.60%.
Collapse
Affiliation(s)
- Jiahua Gao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyu Cheng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Bai
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Songmei Hu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping Yue
- Emin County Xinda Tongchuang Bioengineering Co., Ltd., Tacheng 834600, China
| | - Xiaobo Yu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Minwei Zhang
- Guangdong Testing Institute of Product Quality Supervision, Shunde 528300, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Minyi Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; Wens Foodstuff Group Co., Ltd., Yunfu 527400, China.
| |
Collapse
|
3
|
Wang S, Zhao S, Wang N, Lu Q, Zhao H, Liu Y, Li J, Fan L. Intelligence detection of oil absorption in French fries by surface profiles. Food Res Int 2024; 178:113906. [PMID: 38309900 DOI: 10.1016/j.foodres.2023.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Surface profiles are important evaluation indices for oil absorption behavior of fried foods. This research established two intelligent models of partial least-squares regression (PLSR) and back propagation artificial neural network (BP-ANN) for monitoring the oil absorption behavior of French fries based on the surface characteristics. Surface morphology and texture of French fries by rapeseed oil (RO) and high-oleic peanut oil (HOPO) at different temperatures were investigated. Results showed that oil content of samples increased with frying temperature, accounting for 37.7% and 41.4% of samples fried by RO and HOPO respectively. The increase of crust ratio, roughness and texture parameters (Fm, Nwr, fwr, Wc) and the decrease of uniformity were observed with the frying temperature. Coefficients of prediction set of PLSR and BP-ANN models were more than 0.93, which indicated that surface features combined with chemometrics were rapid and precise methods for determining the oil content of French fries.
Collapse
Affiliation(s)
- Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Nan Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Qianru Lu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Jinwei Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Jin W, Zhang M, Mujumdar AS. A High-Efficiency Radio-Frequency-Assisted Hot-Air Drying Method for the Production of Restructured Bitter Melon and Apple Chips. Foods 2024; 13:197. [PMID: 38254498 PMCID: PMC10814064 DOI: 10.3390/foods13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, consumers are increasingly demanding processed food products with high levels of beneficial components. Bitter melon and apple are both nutritious foods rich in bioactive compounds. In this study, restructured bitter melon and apple chips were processed using four drying techniques: hot-air drying with/without exhaust air recirculation (EAR), and radio-frequency-assisted hot-air drying (RFHAD) with/without EAR. The drying characteristics, effective moisture diffusivity (Deff), specific energy consumption (SEC), total energy consumption (TEC), and some selected quality characteristics of the dehydrated chips were evaluated. The experimental results show that the application of radio frequency (RF) energy significantly facilitates water evaporation in the drying material, resulting in a significant (p < 0.05) reduction of drying duration by 31~39% over the experimental test parameters. The higher Deff values obtained from RFHAD and RFHAD + EAR were 6.062 × 10-9 to 6.889 × 10-9 m2/s, while lower SEC values ranged from 301.57 to 328.79 kW·h/kg. Furthermore, the dried products possessed better or fairly good quality (such as a lower color difference of 5.41~6.52, a lower shrinkage ratio of 18.24~19.13%, better antioxidant capacity, higher chlorophyll, total flavonoid, and total phenolic content, a lower polyphenol oxidase activity of 49.82~52.04 U·min-1g-1, smaller diameter and thickness changes, and a lower hardness of 27.75~30.48 N) compared to those of hot-air-dried chips. The combination of RF-assisted air drying and partial recirculating of dryer exhaust air achieved the highest saving in TEC of about 12.4%, along with a lower moisture absorption capacity and no deterioration of product quality attributes. This drying concept is therefore recommended for the industrial drying of several food materials.
Collapse
Affiliation(s)
- Wei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi 214122, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi 214122, China
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
5
|
Identification of desirable mechanical and sensory properties of bread for the elderly. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2022.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Lin Q, Shen H, Ma S, Zhang Q, Yu X, Jiang H. Morphological Distribution and Structure Transition of Gluten Induced by Various Drying Technologies and Its Effects on Chinese Dried Noodle Quality Characteristics. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Li Y, Jiang S, Zhu Y, Shi W, Zhang Y, Liu Y. Effect of different drying methods on the taste and volatile compounds, sensory characteristics of Takifugu obscurus. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Optimization of Radio Frequency Explosion Puffing Parameters for the Production of Nutritious Snacks. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Successive Two-Stage Hot Air-Drying with Humidity Control Combined Radio Frequency Drying Improving Drying Efficiency and Nutritional Quality of Amomi fructus. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Chen X, Liu Y, Zhang R, Zhu H, Li F, Yang D, Jiao Y. Radio Frequency Drying Behavior in Porous Media: A Case Study of Potato Cube with Computer Modeling. Foods 2022; 11:3279. [PMID: 37431029 PMCID: PMC9602172 DOI: 10.3390/foods11203279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 08/27/2023] Open
Abstract
To study the mechanism of heat and mass transfer in porous food material and explore its coupling effect in radio frequency (RF) drying processes, experiments were conducted with potato cubes subjected to RF drying. COMSOL Multiphysics® package was used to establish a numerical model to simulate the heat and mass transfer process in the potato cube and solved with finite element method. Temperature history at the sample center and the heating pattern after drying was validated with experiment in a 27.12 MHz RF heating system. Results showed the simulation results were in agreement with experiments. Furthermore, the temperature distribution and water vapor concentration distribution were correspondent with water distribution in the sample after RF drying. The water concentration within the food volume was non-uniform with a higher water concentration than the corner, the maximum difference of which was 0.03 g·cm-3. The distribution of water vapor concentration in the sample was similar to that of water content distribution since a pressure gradient from center to corner allowed the mass transfer from the sample to the surrounding in the drying process. In general, the moisture distribution in the sample affected the temperature and water vapor concentration distribution since the dielectric properties of the sample were mainly dependent on its moisture content during a drying process. This study reveals the mechanism of RF drying of porous media and provides an effective approach for analyzing and optimizing the RF drying process.
Collapse
Affiliation(s)
- Xiangqing Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruyi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huacheng Zhu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Deyong Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Jiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
11
|
Namjoo M, Moradi M, Dibagar N, Niakousari M. Cold Plasma Pretreatment Prior to Ultrasound-assisted Air Drying of Cumin Seeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Özbek HN, Elik A, Koçak Yanık D, Işınay B, Sever M, Bulut E, Topçam H, Dalgıç AC, Erdoğdu F, Göğüş F. Effect of sequential-combined solar energy assisted hot air and hot air assisted radio frequency drying on the physical and chemical properties of dried apricots. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2894-2904. [PMID: 35734111 PMCID: PMC9206989 DOI: 10.1007/s13197-021-05314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/10/2021] [Accepted: 11/04/2021] [Indexed: 06/15/2023]
Abstract
Quality characteristics of sulphured and non-sulphured apricots dried with a sequential combined pilot scale solar assisted hot air and hot air assisted radio frequency dryer and conventional sun system were compared. The combined drying approach showed improved color, hardness, antioxidant activity and retention of vitamin C, β-carotene and total phenolic content values compared to conventional sun drying both for sulphured and non-sulphured samples. The effects of sulphur concentration and addition of pistachio hull extract as a treatment prior to drying were also investigated. Increase in sulphur concentration and addition of extract resulted in considerable quality (with respect to color, Vitamin C, β-carotene and total phenolic content) increase in apricots. The apricots pretreated with extract had the highest total phenolic content and antioxidant activity. This study demonstrated that combined drying process is an effective drying method for apricots with the better preservation of product quality attributes.
Collapse
Affiliation(s)
- Hatice Neval Özbek
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Aysel Elik
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Derya Koçak Yanık
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Büşra Işınay
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Melis Sever
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Ecem Bulut
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Hüseyin Topçam
- Department of Food Engineering, Ankara University, 06830 Ankara, Turkey
| | - Ali Coşkun Dalgıç
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Ferruh Erdoğdu
- Department of Food Engineering, Ankara University, 06830 Ankara, Turkey
| | - Fahrettin Göğüş
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
13
|
Yao Y, Zhang B, Zhou L, Wang Y, Fu H, Chen X, Wang Y. Steam-assisted Radio Frequency Blanching to Improve Heating Uniformity and Quality Characteristics of Stem Lettuce Cuboids. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Özbek HN, Koç B, Koçak Yanık D, Göğüş F. Hot air‐assisted radiofrequency drying of avocado: Drying behavior and the associated effect on the characteristics of avocado powder. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hatice Neval Özbek
- Department of Food Engineering, Faculty of Engineering Gaziantep University Gaziantep Turkey
| | - Banu Koç
- Gastronomy and Culinary Arts Department, Faculty of Tourism Gaziantep University Gaziantep Turkey
| | - Derya Koçak Yanık
- Department of Food Engineering, Faculty of Engineering Gaziantep University Gaziantep Turkey
| | - Fahrettin Göğüş
- Department of Food Engineering, Faculty of Engineering Gaziantep University Gaziantep Turkey
| |
Collapse
|
15
|
Impact of radio frequency treatment on textural properties of food products: An updated review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Huang CY, Cheng YH, Chen SD. Hot Air-Assisted Radio Frequency (HARF) Drying on Wild Bitter Gourd Extract. Foods 2022; 11:foods11081173. [PMID: 35454760 PMCID: PMC9025949 DOI: 10.3390/foods11081173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/05/2023] Open
Abstract
Wild bitter gourd (Momordica charantia L. var. abbreviata S.) is a kind of Chinese herbal medicine and is also a vegetable and fruit that people eat daily. Wild bitter gourd has many bioactive components, such as saponin, polysaccharide, and protein, and the extract is used to adjust blood sugar in patients with diabetes. The objective of this study was to investigate simultaneous hot air-assisted radio frequency (HARF) drying and pasteurization for bitter gourd extract, and then to evaluate its effects on blood sugar of type II diabetic mice. The results showed that the solid–liquid ratio of the wild bitter gourd powder to water was 1:10 and it was extracted using focused ultrasonic extraction (FUE) for only 10 min with 70 °C water. Then, 1 kg of concentrated bitter gourd extract was mixed with soybean fiber powder at a ratio of 2:1.1. It was dried by HARF, and the temperature of the sample could reach above 80 °C in only 12 min to simultaneously reduce moisture content (wet basis) from 58% to 15% and achieve a pasteurization effect to significantly reduce the total bacterial and mold counts. Type II diabetic mice induced by nicotinamide and streptozocin (STZ) for two weeks and then were fed four-week feeds containing 5% RF-dried wild gourd extract did not raise fasting blood glucose. Therefore, the dried powder of wild bitter gourd extracts by HARF drying had a hypoglycemic effect.
Collapse
Affiliation(s)
- Chang-Yi Huang
- Department of Biotechnology and Animal Science, National Ilan University, Number 1, Section 1, Shen-Lung Road, Yilan City 26041, Taiwan;
| | - Yu-Huang Cheng
- Department of Food Science, National Ilan University, Number 1, Section 1, Shen-Lung Road, Yilan City 26041, Taiwan;
| | - Su-Der Chen
- Department of Food Science, National Ilan University, Number 1, Section 1, Shen-Lung Road, Yilan City 26041, Taiwan;
- Correspondence: ; Tel.: +886-920518028; Fax: +886-39351892
| |
Collapse
|
17
|
Effect of Radiofrequency Pre-treatment on the Extraction of Bioactives from Clitoria ternatea and Hibiscus rosa sinensis and Insights to Enzyme Inhibitory Activities. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02770-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
A Novel System—the Simultaneous Use of Ohmic Heating with Convective Drying: Sensitivity Analysis of Product Quality Against Process Variables. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Topcam H, Gogus F, Ozbek HN, Elik A, Yanik DK, Dalgic AC, Erdogdu F. Hot air‐assisted radio frequency drying of apricots: Mathematical modeling study for process design. J Food Sci 2022; 87:764-779. [DOI: 10.1111/1750-3841.16021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Huseyin Topcam
- Department of Food Engineering Ankara University Ankara Turkey
| | - Fahrettin Gogus
- Department of Food Engineering Gaziantep University Gaziantep Turkey
| | | | - Aysel Elik
- Department of Food Engineering Gaziantep University Gaziantep Turkey
| | - Derya Kocak Yanik
- Department of Food Engineering Gaziantep University Gaziantep Turkey
| | - Ali Coskun Dalgic
- Department of Food Engineering Gaziantep University Gaziantep Turkey
| | - Ferruh Erdogdu
- Department of Food Engineering Ankara University Ankara Turkey
| |
Collapse
|
20
|
Özbek HN. Radio frequency-assisted hot air drying of carrots for the production of carrot powder: Kinetics and product quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Cao F, Zhang R, Tang J, Li F, Jiao Y. Radio frequency combined hot air (RF-HA) drying of tilapia (Oreochromis niloticus L.) fillets: Drying kinetics and quality analysis. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Ghorani R, Noshad M, Alizadeh Behbahani B. Effects of aerosolized citric acid-radio frequency as a pretreatment on hot-air drying characteristics of banana. Food Sci Nutr 2021; 9:6382-6388. [PMID: 34760268 PMCID: PMC8565226 DOI: 10.1002/fsn3.2610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/07/2022] Open
Abstract
The effects of aerosolized citric acid-radio frequency (RF) pretreatment were evaluated on the quality characteristics of hot air-dried banana. The results showed that increasing the RF intensity elevated the total phenolic content (TPC), shrinkage, and color changes, while the TPC and color changes decreased with increasing the RF exposure duration. A rise in the RF intensity reduced the rehydration ratio (RR) and firmness of the samples. Aerosolization of citric acid rendered the preservation of the phenolic compounds of the samples to a higher extent, and TPC decreased from 311 ± 3.4 mg/g in fresh banana to 252.1 ± 4.24 mg/g in the samples treated with a RF of 27.12 Hz for 40 min, 280.5 ± 8.1 mg/g in the ones treated with 1% aerosolized citric acid for 40 min, and 162.5 ± 10.8 mg/g in the ones with no pretreatment. According to scanning electron microscopy (SEM), the application of aerosolized citric acid pretreatment caused tissue softening and the formation of cell holes in the samples. Cell wall collapse and damage were severe when RF was in use, which caused the blockage of some microchannels within the tissue. The Page model with the highest determination coefficient (R 2) and the lowest root-mean-squared error (RMSE) and chi-square (χ 2) was selected as the best model.
Collapse
Affiliation(s)
- Reza Ghorani
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Mohammad Noshad
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| |
Collapse
|
23
|
Elik A. Hot air-assisted radio frequency drying of black carrot pomace: Kinetics and product quality. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Mao Y, Wang S. Recent developments in radio frequency drying for food and agricultural products using a multi-stage strategy: a review. Crit Rev Food Sci Nutr 2021; 63:2654-2671. [PMID: 34583556 DOI: 10.1080/10408398.2021.1978925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Radio frequency (RF) drying is an emerging technology for food and agricultural products, holding features of rapid, uniform, stable, and volumetric heating, high energy efficiency, and moisture leveling. However, the RF drying with a single stage commonly has drawbacks of unexpected product quality, non-uniform moisture distribution, and prolonged drying time. The multi-stage drying approach could overcome the shortcomings of one-stage strategy accordingly by applying different drying methods or operating parameter values in each phase separately. This review describes the principle of RF heating, presents the typical systems and superiorities of RF drying, and provides a comprehensive overview on recent development in applications of both the one-stage and the multi-stage RF drying, and analysis of drying characteristics and merits for different types of the two-stage strategy. This review finally proposes recommendations for future studies in improving and optimizing the existing RF drying protocols and scaling up them to industrial applications.
Collapse
Affiliation(s)
- Yuxiao Mao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
25
|
Effects of various radio frequencies on combined drying and disinfestation treatments for in-shell walnuts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Xu J, Zhu S, Zhang M, Cao P, Adhikari B. Combined radio frequency and hot water pasteurization of Nostoc sphaeroides: Effect on temperature uniformity, nutrients content, and phycocyanin stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Su Y, Gao J, Tang S, Feng L, Azam SMR, Zheng T. Recent advances in physical fields-based frying techniques for enhanced efficiency and quality attributes. Crit Rev Food Sci Nutr 2021; 62:5183-5202. [PMID: 33563022 DOI: 10.1080/10408398.2021.1882933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Frying is one of the most common units in food processing and catering worldwide, which involves simultaneous physicochemical and structural changes. However, the problems of traditional frying technology, such as low thermal utilization and poor processing efficiency, have been gradually exposed to industrial production. In this paper, strategies of applying physical fields, such as pressure field, electromagnetic field, and acoustic field in frying technology separately or synergistically with improved efficiency and quality attributes are reviewed. The role of physical fields in the frying process was discussed with modifications in heat and mass transfer and porous structures. The effects of physical fields and their processing parameters on moisture loss kinetics, oil uptake, texture, color, and nutrients retention of fried food are introduced, respectively. Recent advances in multi-physical field-based frying techniques were recommended with synergistic benefits. Furthermore, the trends and challenges that could further develop the multi-physical field-based frying techniques are proposed, showing further commercial prospects for the purpose. The application of physical fields has brought new inspiration to the exploitation of efficient and high-qualified frying technologies, while higher technical levels and economic costs need to be taken into consideration. HighlightsThe role of physical fields in pretreatments and frying process were reviewed.The mechanism of physics fields on frying efficiency and quality was summarized.The physicochemical and microstructure changes by physics fields were discussed.The synergy of physical fields in frying technology were outlined.The trends for further multi-physical field-based frying techniques were proposed.
Collapse
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jiayue Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Song Tang
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Lei Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - S M Roknul Azam
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Effect of microwave heating and vacuum oven drying of potato strips on oil uptake during deep-fat frying. Food Res Int 2020; 137:109338. [DOI: 10.1016/j.foodres.2020.109338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/08/2023]
|
29
|
Drying Accelerators to Enhance Processing and Properties: Ethanol, Isopropanol, Acetone and Acetic Acid as Pre-treatments to Convective Drying of Pumpkin. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02542-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Optimization of Osmotic Dehydration of Tomatoes in Solutions of Non-Conventional Sweeteners by Response Surface Methodology and Desirability Approach. Foods 2020; 9:foods9101393. [PMID: 33019673 PMCID: PMC7599634 DOI: 10.3390/foods9101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 01/13/2023] Open
Abstract
The osmotic dehydration (OD) of tomatoes in solutions of alternative sweeteners was investigated using Response Surface Methodology (RSM), while selected desirability functions were implemented in order to define the optimum process parameters (temperature/duration of osmotic treatment, osmotic solution composition and concentration). Mass exchange, color and texture were measured during the process. Changes in color occurred rapidly at the beginning of the process, while firmness was significantly increased, indicating that OD processing led to tomato texture improvement. Color and firmness changes were adequately modeled using a polynomial model. RSM coupled with desirability functions was applied to optimize OD procedure in terms of color retention and maximum solid gain, a requirement for candied products. A maximum desirability was obtained by incorporating oligofructose into the osmotic solution, at relatively short treatment times. Results were validated and sensory analysis was conducted at the optimized conditions to assess samples’ organoleptic acceptance.
Collapse
|