1
|
Ran W, Yue Y, Long F, Zhong K, Bai J, Xiao Y, Bu Q, Huang Y, Wu Y, Gao H. Antibacterial Mechanism of 2R,3R-Dihydromyricetin Against Staphylococcus aureus: Deciphering Inhibitory Effect on Biofilm and Virulence Based on Transcriptomic and Proteomic Analyses. Foodborne Pathog Dis 2023; 20:90-99. [PMID: 36862127 DOI: 10.1089/fpd.2022.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Staphylococcus aureus is a major foodborne pathogen that leads to various diseases due to its biofilm and virulence factors. This study aimed to investigate the inhibitory effect of 2R,3R-dihydromyricetin (DMY), a natural flavonoid compound, on the biofilm formation and virulence of S. aureus, and to explore the mode of action using transcriptomic and proteomic analyses. Microscopic observation revealed that DMY could remarkably inhibit the biofilm formation by S. aureus, leading to a collapse on the biofilm architecture and a decrease in viability of biofilm cell. Moreover, the hemolytic activity of S. aureus was reduced to 32.7% after treatment with subinhibitory concentration of DMY (p < 0.01). Bioinformation analysis based on RNA-sequencing and proteomic profiling revealed that DMY induced 262 differentially expressed genes and 669 differentially expressed proteins (p < 0.05). Many downregulated genes and proteins related to surface proteins were involved in biofilm formation, including clumping factor A (ClfA), iron-regulated surface determinants (IsdA, IsdB, and IsdC), fibrinogen-binding proteins (FnbA, FnbB), and serine protease. Meanwhile, DMY regulated a wide range of genes and proteins enriched in bacterial pathogenesis, cell envelope, amino acid metabolism, purine and pyrimidine metabolism, and pyruvate metabolism. These findings suggest that DMY targets S. aureus through multifarious mechanisms, and especially prompt that interference of surface proteins in cell envelope would lead to attenuation of biofilm and virulence.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Yuxi Yue
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Feiwu Long
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Kai Zhong
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jinrong Bai
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yue Xiao
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Qian Bu
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yina Huang
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yanping Wu
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hong Gao
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yabalak E, Ibrahim F, Erdoğan Eliuz EA. Natural sanitizer potential of Cuminum cyminum and applicable approach for calculation of Kováts retention index of its compounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:158-169. [PMID: 34889124 DOI: 10.1080/09603123.2021.2011159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The demand for natural agents instead of chemicals in terms of food and health safety is increasing day by day. This study aimed to investigate the potential of the methanolic extract of Cuminum cyminum (C. cyminum) in the fight against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus)and Candida (C. albicans). The chemical composition of the methanolic extract of C. cyminum was analyzed using GS-MS. Also, Kováts retention indices were calculated for the detected compounds using an applicable formula. The most basic substance was cuminic aldehyde (27.86%) and p-(Dimethoxymethyl)-isopropylbenze (18.32%). The Minimum Inhibitory Concentration (MIC) of the extract was 0.1 g/mL for S. aureus and C. albicans while it was > 0.1 for E. coli. Although the methanol extract of C. cyminum acts against all three microorganisms, the most lasting effect was on S. aureus, indicating that it can be recommended as a strong antibacterial disinfectant for S. aureus.
Collapse
Affiliation(s)
- Erdal Yabalak
- Mersin University, Faculty of Arts and Science, Department of Chemistry, Mersin Turkey
| | - Firas Ibrahim
- Mersin University, Faculty of Arts and Science, Department of Chemistry, Mersin Turkey
| | - Elif Ayşe Erdoğan Eliuz
- Mersin University, Technical Sciences Vocational School, Department of Food Technology, Turkey
| |
Collapse
|
3
|
Yang S, Dai J, Aweya JJ, Lin R, Weng W, Xie Y, Jin R. The Antibacterial Activity and Pickering Emulsion Stabilizing Effect of a Novel Peptide, SA6, Isolated from Salt-Fermented Penaeus vannamei. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Liu A, Wan Q, Li J, Li Q, Hu K, Ao X, Chen S, He L, Hu X, Hu B, Yang Y, Zou L, Liu S. Rose bud extract as a natural antimicrobial agent against Staphylococcus aureus: Mechanisms and application in maintaining pork safety. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
New insights into the antibacterial mode of action of quercetin against uropathogen Serratia marcescens in-vivo and in-vitro. Sci Rep 2022; 12:21912. [PMID: 36536034 PMCID: PMC9763402 DOI: 10.1038/s41598-022-26621-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
In the course of a quest for therapeutic agents inhibiting uropathogens, the rise and universal blowout of antibiotic-resistant organisms is a wide problem. To overcome this matter, exploration of alternative antimicrobials is necessary. The antimicrobial potential of quercetin has been widely described against some pathogenic microorganisms, but to the best of our knowledge, no report exists against the pathogenicity of uropathogenic Serratia marcescens. Hence, the present study focused on the antibacterial mechanism of action of quercetin, a flavonoid against the uropathogen Serratia marcescens. Quercetin was evaluated for its anti-QS activity, and the attained outcomes showed that quercetin inhibited QS-mediated virulence factors such as biofilm formation, exopolysaccharides, swarming motility and prodigiosin in Serratia marcescens. The proposed mechanism of action of quercetin greatly influences cell metabolism and extracellular polysaccharide synthesis and damages the cell membrane, as revealed through global metabolome profiling. In vivo experiments revealed that treatment with quercetin prolonged the life expectancy of infected Caenorhabditis elegans and reduced the colonization of Serratia marcescens. Hence, the current study reveals the use of quercetin as a probable substitute for traditional antibiotics in the treatment of uropathogen infections driven by biofilms.
Collapse
|
6
|
Yang M, Tao L, Kang XR, Li LF, Zhao CC, Wang ZL, Sheng J, Tian Y. Recent developments in Moringa oleifera Lam. polysaccharides: A review of the relationship between extraction methods, structural characteristics and functional activities. Food Chem X 2022; 14:100322. [PMID: 35571331 PMCID: PMC9092490 DOI: 10.1016/j.fochx.2022.100322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Moringa oleifera Lam. (M. oleifera Lam) is a perennial tropical deciduous tree that belongs to the Moringaceae family. Polysaccharides are one of the major bioactive compounds in M. oleifera Lam and show immunomodulatory, anticancer, antioxidant, intestinal health protection and antidiabetic activities. At present, the structure and functional activities of M. oleifera Lam polysaccharides (MOPs) have been widespread, but the research data are relatively scattered. Moreover, the relationship between the structure and biological activities of MOPs has not been summarized. In this review, the current research on the extraction, purification, structural characteristics and biological activities of polysaccharides from different sources of M. oleifera Lam were summarized, and the structural characteristics of purified polysaccharides were focused on this review. Meanwhile, the biological activities of MOPs were introduced, and some molecular mechanisms were listed. In addition, the relationship between the structure and biological activities of MOPs was discussed. Furthermore, new perspectives and some future research of M. oleifera Lam polysaccharides were proposed in this review.
Collapse
Key Words
- ABTS, 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)
- AKP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Asparate aminotransferase
- Ara, Arabinose
- BUN, Blood urea nitrogen
- Bax, Bcl2-associated X protein
- Bcl-2, B-cell lymphoma
- Biological activities
- CCl4, Carbon tetrachloride
- COX-2, Cyclooxygenase-2
- Caspase-3, Cysteinyl aspartate specific proteinase 3
- Caspase-9, Cysteinyl aspartate specific proteinase 9
- DPPH, 2.2-diphenyl-picryl-hydrazyl radical
- EAE, Enzyme-assisted extraction
- FRAP, Ferric ion reducing antioxidant power
- FTIR, Fourier transform infrared spectroscopy
- Future trends
- GC, Gas chromatography
- GC–MS, Gas chromatography-mass spectrometry
- GSH-Px, Glutathione peroxidase
- Gal, Galactose
- Glc, Glucose
- HDL, High-density Lipoprotein
- HPGPC, High-performance gel permeation chromatography
- HPLC, High performance liquid chromatography
- HepG2, Human hepatocellular carcinoma cell line
- IL-10, Interleukin-10
- IL-1β, Interleukin 1β
- IL-2, Interleukin-2
- IL-6, Interleukin-6
- LDL, Low-density Lipoprotein
- LPS, Lipopolysaccharide
- M. oleifera Lam, Moringa oleifera Lam.
- MAE, Microwave-assisted extraction
- MDA, Malondialdehyde
- MOPs, Moringa oleifera Lam polysaccharides
- MS, Mass spectrometry
- MTT, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide
- MW, Molecular weight
- Man, Mannose
- Moringa oleifera Lam
- NF-κB, Nuclear factor kappa-B
- NK, Natural killer cell
- NMR, Nuclear magnetic resonance
- NO, Nitric oxide
- PLE, Pressurized liquid extraction
- Polysaccharides
- ROS, Reactive oxygen species
- Rha, Rhamnose
- SCFAs, Short-chain fatty acids
- SOD, Superoxide dismutase
- Structure characteristics
- Structure-biological relationship
- TC, Total Cholesterol
- TG, Triglycerides
- TNF-α, Tumour necrosis factor-α
- TOF, Time of flight
- UAE, Ultrasound-assisted extraction
- V/C, Ileum crypt and villus length
- WAE, Water-assisted extraction
- Xyl, Xylose
- iNOS, Inducible nitric oxide synthase
Collapse
Affiliation(s)
- Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xin-Rui Kang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Ling-Fei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Cun-Chao Zhao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Zi-Lin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Electrochemical Biosensors for Foodborne Pathogens Detection Based on Carbon Nanomaterials: Recent Advances and Challenges. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02759-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|