da Silva Anthero AG, Maria Tomazini Munhoz Moya A, Souza Torsoni A, Baú Betim Cazarin C, Dupas Hubinger M. Characterization of
Capsicum oleoresin microparticles and
in vivo evaluation of short-term capsaicin intake.
Food Chem X 2022;
13:100179. [PMID:
34917929 PMCID:
PMC8666524 DOI:
10.1016/j.fochx.2021.100179]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Modified malt was successfully used in Capsicum oleoresin microencapsulation.
High antioxidant activities by ORAC and FRAP were observed for all microparticles.
Diet containing Capsicum oleoresin microparticles can promote weight gain control.
Liver damage caused by obesity was prevented by high doses of Capsicum's oleoresin.
Gum arabic, modified corn starch (EMCAP), modified malt (MALT), either blended or isolated, were assessed as encapsulating agents for Capsicum oleoresin. Capsicum oleoresin microparticles were obtained by spray drying and analysed for physicochemical properties and in vivo. Obtained powders were adequate for storage, given their low water activity (<0.150), hygroscopicity (<11.43 g/100 g), moisture (<4.76%) and high glass transition temperature (<98.3 °C). FT-IR analysis concluded that carbohydrates matrices were loaded after spray drying, with peaks around 2850 cm –1 for aromatic compounds, and bands around 1760 cm−1, pointing to the presence of capsaicin inside the microparticles. All formulations exhibited high antioxidant activity, low contact angles and great solubility in water. Any adverse effect was observed in the experimental assay, neither change on the level of hepatic aminotransferases. The intake of a High-Fat Diet (HFD) supplemented with Capsicum oleoresin microparticles decreased weight gain when compared to the HFD control.
Collapse