1
|
Aili Q, Cui D, Li Y, Zhige W, Yongping W, Minfen Y, Dongbin L, Xiao R, Qiang W. Composing functional food from agro-forest wastes: Selectively extracting bioactive compounds using supercritical fluid extraction. Food Chem 2024; 455:139848. [PMID: 38823122 DOI: 10.1016/j.foodchem.2024.139848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Supercritical fluid extraction (SFE) employing carbon dioxide (SC-CO2) is an efficient method to extract bioactive compounds from agro-forest wastes. These compounds maintain and/or improve food nutrition, safety, freshness, taste, and health and are employed as natural functional food components. To highlight the potential of this technology, we focus on the following current advances: (I) parameters affecting solubility in SFE (pressure, temperature, SC-CO2 flow rate, extraction time, and co-solvents); (II) extraction spectra and yield obtained according to proportion and composition of co-solvents; (III) extract bioactivity for functional food production. Fatty acids, monoterpenes, sesquiterpenes, diterpenoids, and low-polarity phenolic acids and triterpenoids were extracted using SFE without a co-solvent. High-polarity phenolic acids and flavonoids, tannins, carotenoids, and alkaloids were only extracted with the help of co-solvents. Using a co-solvent significantly improved the triterpenoid, flavonoid, and phenolic acid yield with a medium polarity.
Collapse
Affiliation(s)
- Qu Aili
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China
| | - Du Cui
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China
| | - Yang Li
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China
| | - Wu Zhige
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China
| | - Wu Yongping
- School of Electromechanical and Energy Engineering, NingboTech University, Ningbo 315100, PR China
| | - Yu Minfen
- Ningbo Bureau of Natural Resources and Planning, Ningbo Forest Farm, Ningbo 315440, PR China
| | - Li Dongbin
- Ningbo Bureau of Natural Resources and Planning, Ningbo Forest Farm, Ningbo 315440, PR China
| | - Ruan Xiao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China.
| | - Wang Qiang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China.
| |
Collapse
|
2
|
Łyko L, Olech M, Gawlik U, Krajewska A, Kalemba D, Tyśkiewicz K, Piórecki N, Prokopiv A, Nowak R. Rhododendron luteum Sweet Flower Supercritical CO 2 Extracts: Terpenes Composition, Pro-Inflammatory Enzymes Inhibition and Antioxidant Activity. Int J Mol Sci 2024; 25:9952. [PMID: 39337440 PMCID: PMC11432528 DOI: 10.3390/ijms25189952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, β-sitosterol and 3β-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, β-phenylethanol, dodecane, β-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential.
Collapse
Affiliation(s)
- Lena Łyko
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences, ul. Skromna 8, 20-704 Lublin, Poland
| | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Danuta Kalemba
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Katarzyna Tyśkiewicz
- Supercritical Extraction Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, ul. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, ul. Cicha 2A, 35-326 Rzeszow, Poland
| | - Andriy Prokopiv
- Department of Botany, Botanical Garden, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Sustainable Approaches Using Green Technologies for Apple By-Product Valorisation as A New Perspective into the History of the Apple. Molecules 2022; 27:molecules27206937. [PMID: 36296530 PMCID: PMC9610383 DOI: 10.3390/molecules27206937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The apple has been recognised as the most culturally important fruit crop in temperate land areas. Centuries of human exploitation and development led to the production of thousands of apple cultivars. Nowadays, the apple represents the third most widely cultivated fruit in the world. About 30% of the total production of apples is processed, being juice and cider the main resulting products. Regarding this procedure, a large quantity of apple by-product is generated, which tends to be undervalued, and commonly remains underutilised, landfilled, or incinerated. However, apple by-product is a proven source of bioactive compounds, namely dietary fibre, fatty acids, triterpenes, or polyphenols. Therefore, the application of green technologies should be considered in order to improve the functionality of apple by-product while promoting its use as the raw material of a novel product line. The present work provides a holistic view of the apple’s historical evolution, characterises apple by-product, and reviews the application of green technologies for improving its functionality. These sustainable procedures can enable the transformation of this perishable material into a novel ingredient opening up new prospects for the apple’s potential use and consumption.
Collapse
|
4
|
Falev DI, Ovchinnikov DV, Voronov IS, Faleva AV, Ul’yanovskii NV, Kosyakov DS. Supercritical Fluid Chromatography-Tandem Mass Spectrometry for Rapid Quantification of Pentacyclic Triterpenoids in Plant Extracts. Pharmaceuticals (Basel) 2022; 15:629. [PMID: 35631456 PMCID: PMC9143669 DOI: 10.3390/ph15050629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Pentacyclic triterpenoids (PCTs) are a widely distributed class of plant secondary metabolites. These compounds have high bioactive properties, primarily antitumor and antioxidant activity. In this study, a method was developed for the quantitative analysis of pentacyclic triterpenoids in plants using supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). Separation of ten major PCTs (friedelin, lupeol, β-amyrin, α-amyrin, betulin, erythrodiol, uvaol, betulinic, oleanolic and ursolic acids) was studied on six silica-based reversed stationary phases. The best results (7 min analysis time in isocratic elution mode) were achieved on an HSS C18 SB stationary phase using carbon dioxide-isopropanol (8%) mobile phase providing decisive contribution of polar interactions to the retention of analytes. It was shown that the use of atmospheric pressure chemical ionization (APCI) is preferred over atmospheric pressure photoionization (APPI). The combination of SFC with APCI-MS/MS mass spectrometry made it possible to achieve the limits of quantification in plant extracts in the range of 2.3-20 μg·L-1. The developed method was validated and tested in the analyses of birch outer layer (Betula pendula) bark, and licorice (Glycyrrhiza glabra) root, as well as lingonberry (Vaccinium vitis-idaea), cranberry (Vaccinium oxycoccos), apple (Malus domestica "Golden Delicious" and Malus domestica "Red Delicious") peels.
Collapse
Affiliation(s)
- Danil I. Falev
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (D.V.O.); (I.S.V.); (A.V.F.); (N.V.U.)
| | | | | | | | | | - Dmitry S. Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (D.V.O.); (I.S.V.); (A.V.F.); (N.V.U.)
| |
Collapse
|
5
|
Gołębiewska E, Kalinowska M, Yildiz G. Sustainable Use of Apple Pomace (AP) in Different Industrial Sectors. MATERIALS 2022; 15:ma15051788. [PMID: 35269018 PMCID: PMC8911415 DOI: 10.3390/ma15051788] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
In many countries, apple pomace (AP) is one of the most produced types of agri-food waste (globally, it is produced at a rate of ~4 million tons/year). If not managed properly, such bio-organic waste can cause serious pollution of the natural environment and public health hazards, mainly due to the risk of microbial contamination. This review shows that AP can be successfully reused in different industrial sectors—for example, as a source of energy and bio-materials—according to the idea of sustainable development. The recovered active compounds from AP can be applied as preservatives, antioxidants, anti-corrosion agents, wood protectors or biopolymers. Raw or processed forms of AP can also be considered as feedstocks for various bioenergy applications such as the production of intermediate bioenergy carriers (e.g., biogas and pyrolysis oil), and materials (e.g., biochar and activated carbon). In the future, AP and its active ingredients can be of great use due to their non-toxicity, biodegradability and biocompatibility. Given the increasing mass of produced AP, the commercial applications of AP could have a huge economic impact in the future.
Collapse
Affiliation(s)
- Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
- Correspondence: (E.G.); (M.K.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
- Correspondence: (E.G.); (M.K.)
| | - Güray Yildiz
- Department of Energy Systems Engineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey;
| |
Collapse
|