1
|
Sulejmanović M, Panić M, Redovniković IR, Milić N, Drljača J, Damjanović A, Vidović S. Sustainable isolation of ginger (Zingiber officinale) herbal dust bioactive compounds with favorable toxicological profile employing natural deep eutectic solvents (NADES). Food Chem 2024; 464:141545. [PMID: 39395331 DOI: 10.1016/j.foodchem.2024.141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
The usage of ginger (Zingiber officinale) has increased in recent years due to its positive effect on human health affiliated with its richness in gingerols and shogaols. This study optimized the Ultrasound-assisted extraction (UAE) for better phenolic compounds isolation from ginger herbal dust (GHD), a filter tea industry by-product. The extraction was performed using raw and defatted GHD-previously processed by Supercritical fluid extraction - CO2. An additional advantage was using COSMOtherm software for 71 natural deep eutectic solvents (NADES) screening, to select the optimal one for GHD 6-gingerol recovery. As an optimal NADES, Malic acid:Glucose (MA:Glc) in the 1:1 ratio was determined. The optimal MA: Glc-based extract with a 6-gingerol content of 1.90±0.05 mg/g, an antioxidant activity of 321.28±5.09 μmol TE/g, and a favorable toxicological profile was obtained in 2 min of UAE under the sonication amplitude of 20 %, approving the benefits and the sustainability of the present study.
Collapse
Affiliation(s)
- Mirjana Sulejmanović
- Department of Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Boulevard Cara Lazara 1, 21000 Novi Sad, Serbia; Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
| | - Manuela Panić
- Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
| | - Ivana Radojčić Redovniković
- Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Jovana Drljača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Anja Damjanović
- Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
| | - Senka Vidović
- Department of Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Boulevard Cara Lazara 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
2
|
Pencak T, Dordevic D, Ćavar Zeljković S, Tremlova B. Oak Leaves as a Raw Material for the Production of Alcoholic Fermented Beverages. Foods 2024; 13:1641. [PMID: 38890869 PMCID: PMC11172069 DOI: 10.3390/foods13111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
This study aimed to point out the possible use of oak leaves (Q. petraea) in the production of fermented alcoholic beverages. Parameters such as antioxidant capacity, total phenolic content, phenolics and sugars were determined using spectrophotometric and chromatographic methods. pH values were also determined, and in the final product with a fermentation length of 85 days, the alcohol content was determined and sensory analysis performed. The antioxidant capacity of the beverage was lower compared to the infusions before fermentation, and its highest values were recorded in the leaf samples, in which the highest values of phenolic compounds and the total phenolic content were also recorded. A decrease in the content of total phenolics was recorded with the increasing length of fermentation in beverage samples. However, the fermentation process had a positive effect on the contents of some phenolic substances such as catechin, gallic acid and gallocatechin. Sensory analysis showed a higher acceptability of the fermented beverage without the addition of orange, which could be caused by the higher sugar content in these samples. Oak leaves therefore represent a suitable raw material for the production of a fermented alcoholic beverage, without the need to enrich the taste with other ingredients.
Collapse
Affiliation(s)
- Tomas Pencak
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (T.P.)
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (T.P.)
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 783 71 Olomouc, Czech Republic;
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Bohuslava Tremlova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (T.P.)
| |
Collapse
|
3
|
Wong WY, Ismail SM, Phan CW, Tan YS. Size Matters: Influence of Particle Size on Antioxidant, β-Glucan, and Anti-Inflammatory Potential in Pleurotus floridanus (Agaricomycetes). Int J Med Mushrooms 2024; 26:17-31. [PMID: 39093399 DOI: 10.1615/intjmedmushrooms.2024054164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cellular damage resulting from elevated levels of free radicals can lead to persistent health issues. Pleurotus floridanus, an edible white oyster mushroom, is rich in β-glucans with potent antioxidant and anti-inflammatory properties. In this research, we examined the β-glucan content, total phenolic content, as well as antioxidant and anti-inflammatory potential of hot water extracts with varying particle sizes (< 75, 75-154, 154-300, and 300-600 μm) of both whole and sliced fruiting bodies of P. floridanus. The findings revealed that the в-glucan content increased as the particle size increased, although no significant differences were observed. Conversely, smaller particle sizes (< 75 μm) of whole and sliced fruiting bodies of P. floridanus exhibited higher phenolic content, 2,2-diphenyl-1-picryl-hy-drazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activity, and reducing ability compared with larger particle size (> 75 μm). Of the four samples (AW2, AW3, AS1, and AS2) with the highest antioxidant activity selected for anti-inflammatory assays, all demonstrated the ability to reduce nitric oxide and tumor necrosis factor-alpha levels, but did not enhance interleukin-10 expression in lipopolysaccharide-stimulated RAW264.7 cells. Interestingly, particle size < 75 to 300 μm did not appear to influence the anti-inflammatory activity, because no significant differences were observed among the particle sizes. Therefore, a particle size < 300 μm in a P. floridanus hot water extract could serve as a valuable source of antioxidant and anti-inflammatory compounds to counteract the harmful effects of free radicals.
Collapse
Affiliation(s)
- Wei-Yan Wong
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre, 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Kijpatanasilp I, Shiekh KA, Jafari S, Worobo RW, Assatarakul K. Microbial Inhibition by UV Radiation Combined with Nisin and Shelf-Life Extension of Tangerine Juice during Refrigerated Storage. Foods 2023; 12:2725. [PMID: 37509817 PMCID: PMC10379832 DOI: 10.3390/foods12142725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
This study evaluated the efficiency of UV radiation doses (4.68-149.76 J/cm2) and nisin (50-200 ppm) and their combination in comparison with thermal pasteurization on the microbial inhibition kinetics and physicochemical properties of tangerine juice. It was noted that UV-149.76 J/cm2 and nisin (NS) at 200 ppm in conjunction exhibited the highest log reduction in spoilage and pathogenic microbes including Escherichia coli, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae, yeast and molds, and total plate count in tangerine juice. Additionally, the first-order kinetic model provides a better fit for spoilage and pathogenic strains compared with the zero-order model (higher coefficient of determination, R2), particularly for E. coli. UV and NS showed insignificant effects (p > 0.05) on pH, TSS, and TA values compared with pasteurization. However, there were notable differences observed in color analysis, total phenolic compound, total flavonoid content, vitamin C, carotenoid content, and antioxidant activity using DPPH and FRAP assays. The optimized UV + NS samples were subjected to refrigerated storage for 21 days. The results revealed that during the entire storage period, the pH values and the TSS values slightly decreased, and the TA values increased in the treated samples. The UV + NS treatment insignificantly impacted the color properties. The total phenolic, total flavonoid, and carotenoid contents, and vitamin C decreased over time for all sample treatments, whereas the antioxidant properties exhibited varying outcomes, compared with an untreated control and pasteurization. Therefore, UV radiation and nisin (UV-149.76 J/cm2 + NS-200 ppm) in combination could serve as a viable alternative to traditional heat pasteurization of fruit juice during cold storage.
Collapse
Affiliation(s)
- Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Khursheed Ahmad Shiekh
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Randy W Worobo
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Pedrali D, Scarafoni A, Giorgi A, Lavelli V. Binary Alginate-Whey Protein Hydrogels for Antioxidant Encapsulation. Antioxidants (Basel) 2023; 12:1192. [PMID: 37371922 PMCID: PMC10295361 DOI: 10.3390/antiox12061192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Encapsulation of antioxidants in hydrogels, i.e., three-dimensional networks that retain a significant fraction of water, is a strategy to increase their stability and bioaccessibility. In fact, low oxygen diffusivity in the viscous gelled phase decreases the rate of oxidation. Moreover, some hydrocolloids such as alginate and whey proteins provide a pH-dependent dissolution mechanism, allowing the retention of encapsulated compounds in the gastric environment and their release in the intestine, where they can be absorbed. This paper reviews the information on alginate-whey protein interactions and on the strategies to use binary mixtures of these polymers for antioxidant encapsulation. Results showed that alginate and whey proteins strongly interact, forming hydrogels that can be modulated by alginate molecular mass, mannuronic acid: guluronic acid ratio, pH, Ca2+ or transglutaminase addition. Hydrogels of alginate and whey proteins, in the forms of beads, microparticles, microcapsules, and nanocapsules, generally provide better encapsulation efficiency and release properties for antioxidants with respect to the hydrogel of alginate alone. The main challenges for future studies are to extend knowledge on the interactions among three components, namely alginate, whey proteins, and the encapsulated bioactive compounds, and to investigate the stability of these structures under food processing conditions. This knowledge will represent the rationale basis for the development of structures that can be tailored to specific food applications.
Collapse
Affiliation(s)
- Davide Pedrali
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Department of Agricultural and Environmental Sciences-Production, Landscape and Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milan, Italy;
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, 25048 Edolo, Italy
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Anna Giorgi
- Department of Agricultural and Environmental Sciences-Production, Landscape and Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milan, Italy;
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, 25048 Edolo, Italy
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
6
|
Jafarpour D, Hashemi SMB, Asadi-Yousefabad SH, Javdan G. Conventional thermal and microwave processing of guava juice: process intensification, microbial inactivation and chemical composition. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Zhong Y, Zhang Y, Liu X, Liu C, Wu J, Huang H, Zhang P, Zeng Z. Structural Characteristics of Cooked Black Rice Influenced by Different Stabilization Treatments and Their Effect Mechanism on the In Vitro Digestibility. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Çelik S, Kutlu N, Gerçek YC, Bayram S, Pandiselvam R, Bayram NE. Optimization of Ultrasonic Extraction of Nutraceutical and Pharmaceutical Compounds from Bee Pollen with Deep Eutectic Solvents Using Response Surface Methodology. Foods 2022; 11:foods11223652. [PMID: 36429245 PMCID: PMC9689732 DOI: 10.3390/foods11223652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, there has been increasing interest in green extraction methods and green solvents due to their many advantages. In this study, the effects of an ultrasonic extraction method and deep eutectic solvents (DESs) on the extraction of different bioactive substances from bee pollen were investigated. In this regard, the effects of process variables such as the molar ratio of the DES (1, 1.5, and 2), sonication time (15, 30, and 45 min), and ultrasonic power (90, 135 and 180 W) on total individual amino acids, total individual organic acids, and total individual phenolic compounds were investigated by response surface methodology (RSM). The optimal conditions were found to be a molar ratio of 2, sonication time of 45 min, and ultrasonic power of 180 W (R2 = 0.84). Extracts obtained via the maceration method using ethanol as a solvent were evaluated as the control group. Compared with the control group, the total individual amino acid and total individual organic acid values were higher using DESs. In addition, compounds such as myricetin, kaempferol, and quercetin were extracted at higher concentrations using DESs compared to controls. The results obtained in antimicrobial activity tests showed that the DES groups had broad-spectrum antibacterial effects against all bacterial samples, without exception. However, in yeast-like fungus samples, this inhibition effect was negligibly low. This study is the first to evaluate the impact of DESs on the extraction of bioactive substances from bee pollen. The obtained results show that this innovative and green extraction technique/solvent (ultrasonic extraction/DES) can be used successfully to obtain important bioactive compounds from bee pollen.
Collapse
Affiliation(s)
- Saffet Çelik
- Technology Research and Development Application and Research Center, Trakya University, Edirne 22030, Turkey
| | - Naciye Kutlu
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, Bayburt 69500, Turkey
| | - Yusuf Can Gerçek
- Centre for Plant and Herbal Products Research-Development, Istanbul 34134, Turkey
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34116, Turkey
| | - Sinan Bayram
- Department of Medical Services and Techniques, Vocational School of Health Services, Bayburt University, Bayburt 69000, Turkey
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, India
- Correspondence: (R.P.); (N.E.B.)
| | - Nesrin Ecem Bayram
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, Bayburt 69500, Turkey
- Correspondence: (R.P.); (N.E.B.)
| |
Collapse
|