1
|
Ali Redha A, Torquati L, Bows JR, Gidley MJ, Cozzolino D. Microencapsulation of broccoli sulforaphane using whey and pea protein: in vitro dynamic gastrointestinal digestion and intestinal absorption by Caco-2-HT29-MTX-E12 cells. Food Funct 2025; 16:71-86. [PMID: 39431890 DOI: 10.1039/d4fo03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sulforaphane, an organosulfur phytochemical, has been demonstrated to have significant anticancer potential in both in vitro and in vivo studies, exhibiting mechanisms of action that include inducing apoptosis, inhibiting cell proliferation, and modulating key signalling pathways involved in cancer development. However, its instability presents a major obstacle to its clinical application due to its limited bioavailability. This study aimed to improve the stability and thus the bioavailability of sulforaphane from broccoli by microencapsulation with whey (BW) and pea protein (BP) by freeze-drying. BW and BP were characterised by particle size measurement, colour, infrared spectroscopy, scanning electron microscopy, thermogravimetry, and differential scanning calorimetry. Dynamic in vitro gastrointestinal digestion was performed to measure sulforaphane bioaccessibility, in BP, BW and dried broccoli. A Caco-2-HT29-MTX-E12 intestinal absorption model was used to measure sulforaphane bioavailability. The in vitro dynamic gastrointestinal digestion revealed that sulforaphane bioaccessibility of BW was significantly higher (67.7 ± 1.2%) than BP (19.0 ± 2.2%) and dried broccoli (19.6 ± 10.4%) (p < 0.01). In addition, sulforaphane bioavailability of BW was also significantly greater (54.4 ± 4.0%) in comparison to BP (9.6 ± 1.2%) and dried broccoli (15.8 ± 2.2%) (p < 0.01). Microencapsulation of broccoli sulforaphane with whey protein significantly improved its in vitro bioaccessibility and bioavailability. This suggests that whey protein isolate could be a promising wall material to protect and stabilise sulforaphane for enhanced bioactivity and applications (such as nutraceutical formulations).
Collapse
Affiliation(s)
- Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Luciana Torquati
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| | | | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Zhang Y, Zhang W, Zhao Y, Peng R, Zhang Z, Xu Z, Simal-Gandara J, Yang H, Deng J. Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38841734 DOI: 10.1080/10408398.2024.2354937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renjie Peng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Salehiamin M, Ghoraishizadeh S, Habibpour A, Tafreshi S, Abolhasani MM, Shemiranykia Z, Sefat KK, Esmaeili J. Simultaneous usage of sulforaphane nanoemulsion and tannic acid in ternary chitosan/gelatin/PEG hydrogel for knee cartilage tissue engineering: In vitro and in vivo study. Int J Biol Macromol 2024; 271:132692. [PMID: 38806085 DOI: 10.1016/j.ijbiomac.2024.132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
The therapeutic potential of tissue engineering in addressing articular cartilage defects has been a focal point of research for numerous years. Despite its promising outlook, a persistent challenge within this domain is the lack of sufficient functional integration between engineered and natural tissues. This study introduces a novel approach that employs a combination of sulforaphane (SFN) nanoemulsion and tannic acid to enhance cartilage tissue engineering and promote tissue integration in a rat knee cartilage defect model. To substantiate our hypothesis, we conducted a series of in vitro and in vivo experiments. The SFN nanoemulsion was characterized using DLS, zeta potential, and TEM analyses. Subsequently, it was incorporated into a ternary polymer hydrogel composed of chitosan, gelatin, and polyethylene glycol. We evaluated the hydrogel with (H-SFN) and without (H) the SFN nanoemulsion through a comprehensive set of physicochemical, mechanical, and biological analyses. For the in vivo study, nine male Wistar rats were divided into three groups: no implant (Ctrl), H, and H-SFN. After inducing a cartilage defect, the affected area was treated with tannic acid and subsequently implanted with the hydrogels. Four weeks post-implantation, the harvested cartilage underwent histological examination employing H&E, safranin O/fast green, alcian blue, and immunohistochemistry staining techniques. Our results revealed that the SFN nanodroplets had an average diameter of 75 nm and a surface charge of -11.58 mV. Moreover, degradation, swelling rates, hydrophilicity, and elasticity features of the hydrogel incorporating SFN were improved. Histopathological analysis indicated a higher production of GAGs and collagen in the H-SFN group. Furthermore, the H-SFN group exhibited superior cartilage regeneration and tissue integration compared to the Ctrl and H groups. In conclusion, the findings of this study suggest the importance of considering cell protective properties in the fabrication of scaffolds for knee cartilage defects, emphasizing the potential significance of the proposed SFN nanoemulsion and tannic acid approach in advancing the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran
| | | | - Ava Habibpour
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sadaf Tafreshi
- Hygienics Department, Biomedical Engineering, Tehran Medical Sciences Islamic Azad University, Tehran, Iran; Materials Department, Biomedical Engineering, Materials and Energy Research Institute, Karaj, Iran
| | - Mohammad Mahdi Abolhasani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center (MERC), Karaj, Iran
| | | | - Karim Kaveh Sefat
- Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Javad Esmaeili
- Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| |
Collapse
|
4
|
Ghanbari Hassan Kiadeh S, Rahaiee S, Azizi H, Govahi M. The synthesis of broccoli sprout extract-loaded silk fibroin nanoparticles as efficient drug delivery vehicles: development and characterization. Pharm Dev Technol 2024; 29:359-370. [PMID: 38546461 DOI: 10.1080/10837450.2024.2336101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Targeted drug delivery of biological molecules using the development of biocompatible, non-toxic and biodegradable nanocarriers can be a promising method for cancer therapy. In this study, silk fibroin protein nanoparticles (SFPNPs) were synthesized as a targeted delivery system for sulforaphane-rich broccoli sprout extract (BSE). The BSE-loaded SFPNPs were conjugated with polyethylene glycol and folic acid, and then their physicochemical properties were characterized via UV-Vis, XRD, FTIR, DLS, FE-SEM and EDX analyses. In vitro, the release profile, antioxidant and anticancer activities of NPs were also studied. The FE-SEM and DLS analyses indicated stable NPs with an average size of 88.5 nm and high zeta potential (-32 mV). The sulforaphane release profile from NPs was pH-dependent, with the maximum release value (70%) observed in simulated intestinal fluid (pH = 7.4). Encapsulation of BSE also decreased the release rate of sulforaphane from the capsules compared to free BSE. In vitro cytotoxicity of BSE and NPs on breast cancer cell lines (MCF-7) was concentration-dependent, and the IC50 for BSE and NPs were 54 and 210 μg ml-1, respectively. Moreover, the NPs demonstrated no appreciable cytotoxicity in normal mouse fibroblast (L929) cell lines. These results indicated that biocompatible NPs synthesized as controlled and long-term targeted drug delivery systems can be a potential candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Saeed Ghanbari Hassan Kiadeh
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Somayeh Rahaiee
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Department of Nano Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Mostafa Govahi
- Department of Nano Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
5
|
Ang SS, Thoo YY, Siow LF. Encapsulation of Hydrophobic Apigenin into Small Unilamellar Liposomes Coated with Chitosan Through Ethanol Injection and Spray Drying. FOOD BIOPROCESS TECH 2023:1-16. [PMID: 37363383 PMCID: PMC10261843 DOI: 10.1007/s11947-023-03140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Despite the multiple health benefits, natural flavonoid apigenin has poor aqueous solubility that restricts its delivery in foods. This study investigated the potential of spray-dried chitosan-coated liposomes prepared from scalable methods for the food industry as the delivery carriers for apigenin. Apigenin-loaded small unilamellar liposomes produced from ethanol injection had an encapsulation efficiency of 74.88 ± 5.31%. They were electrostatically stabilised via chitosan coating (0.25% w/v) and spray-dried. Spray-dried chitosan-coated apigenin liposomes (SCAL) exhibited the following powder characteristics: yield 66.62 ± 3.08%, moisture content 4.33 ± 0.56%, water activity 0.2242 ± 0.0548, particle size 10.97 ± 1.55 μm, nearly spherical morphology with wrinkles and dents under microscopic observation. Compared with the unencapsulated apigenin, SCAL demonstrated improved aqueous solubility (10.22 ± 0.18 mg/L), higher antioxidant capacity, and stability against simulated gastrointestinal digestion. The chitosan coating gave a slower in-vitro release of apigenin in SCAL (77.0 ± 6.2%) than that of uncoated apigenin liposomes (94.0 ± 5.3%) at 12 h. The apigenin release kinetics from SCAL could be represented by the Korsmeyer-Peppas model (R2 = 0.971). These findings suggest that SCAL could be a promising delivery system of apigenin for functional food applications.
Collapse
Affiliation(s)
- San-San Ang
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor Malaysia
| | - Yin Yin Thoo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor Malaysia
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
6
|
Emadzadeh B, Naji-Tabasi S, Bostan A, Ghorani B. An insight into Iranian natural hydrocolloids: Applications and challenges in health-promoting foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Souri P, Emamifar A, Davati N. Physical and Antimicrobial Properties of Nano-ZnO-loaded Nanoliposomes Prepared by Thin Layer Hydration-Sonication and Heating Methods. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
8
|
Azarashkan Z, Motamedzadegan A, Ghorbani‐HasanSaraei A, Biparva P, Rahaiee S. Investigation of the physicochemical, antioxidant, rheological, and sensory properties of ricotta cheese enriched with free and nano-encapsulated broccoli sprout extract. Food Sci Nutr 2022; 10:4059-4072. [PMID: 36348770 PMCID: PMC9632186 DOI: 10.1002/fsn3.3001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to produce the functional ricotta cheese using broccoli sprouts extract (BSE) and to evaluate its physicochemical, antioxidant, rheological, and sensory properties. The BSE nano-liposome was nano-encapsulated into basil seed gum (BSG) and was incorporated into the ricotta cheese formulation in two forms of free and nano-capsules in two levels of 3% and 5% w/w. The measurements were conducted during a 15-day storage period at 4-6°C. The results showed that the titratable acidity, hardness, and chewiness of cheeses were increased and the pH, moisture, total phenol content (TPC), and antioxidant activity were decreased (p < .05). With the addition of BSE concentration, the TPC and antioxidant activity increased significantly (p < .05) and applying the nano-encapsulation method for BSE led to better preservation of bioactive compounds. Based on the rheological results, viscoelastic solid behavior and a weak gel were observed in all cheese samples. The results of sensory evaluation demonstrated that cheeses containing free extract had lower flavor and overall acceptability scores than other samples, which indicates that the nano-encapsulation covered the undesirable flavor of the BSE. Generally, during the 15-day cold storage period, the highest sensory acceptance and functional activity were related to the samples containing nano-encapsulated BSE, especially at the 5% level.
Collapse
Affiliation(s)
- Zahra Azarashkan
- Department of Food Science and Technology, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Ali Motamedzadegan
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resource UniversitySariIran
| | | | - Pourya Biparva
- Department of Basic SciencesSari University of Agricultural Sciences and Natural ResourcesSariIran
| | - Somayeh Rahaiee
- Department of Microbial Biotechnology, Faculty of BiotechnologyAmol University of Special Modern TechnologiesAmolIran
| |
Collapse
|