Can Karaca A, Rezaei A, Qamar M, Assadpour E, Esatbeyoglu T, Jafari SM. Lipid-based nanodelivery systems of curcumin: Recent advances, approaches, and applications.
Food Chem 2025;
463:141193. [PMID:
39276542 DOI:
10.1016/j.foodchem.2024.141193]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Despite its many beneficial effects, pharmaceutical applications of curcumin (CUR) are limited due to its chemical instability, low solubility/absorption and weak bioavailability. Recent advances in nanotechnology have enabled the development of CUR-loaded nanodelivery systems to tackle those issues. Within many different nanocarriers developed for CUR up to date, lipid-based nanocarriers (LBNs) are among the most extensively studied systems. LBNs such as nanoemulsions, solid lipid carriers, nanostructured phospholipid/surfactant carriers are shown to be potential delivery systems capable of improving the solubility, bioavailability, and chemical stability of CUR. The particle characteristics, stability, bioavailability, and release properties of CUR-loaded LBNs can be tailored via optimizing the formulation and processing parameters. This paper reviews the most recent studies on the development of various CUR-loaded LBNs. Approaches to the improvement of CUR bioavailability and release characteristics of LBNs are discussed. Furthermore, challenges in the development of CUR-loaded LBNs and their potential applications are presented.
Collapse