1
|
Mann KA, Miller MA, Gandhi SA, Kusler JE, Tatusko ME, Biggs AE, Oest ME. Peri-operative zoledronic acid attenuates peri-prosthetic osteolysis in a rat model of cemented knee replacement. J Orthop Res 2024. [PMID: 39032112 DOI: 10.1002/jor.25941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
Progressive osteolysis can occur at the cement-bone interface of joint replacements and the associated loss of fixation can lead to clinical loosening. We previously developed a rat hemiarthroplasty model that exhibited progressive loss of fixation with the development of cement-bone gaps under the tibial tray that mimicked patterns found in human arthroplasty retrievals. Here we explored the ability of a bisphosphonate (zoledronic acid, ZA) to attenuate cement-bone osteolysis and maintain implant stability. Sprague-Dawley rats (n = 59) received a poly(methylmethacrylate) cemented tibial component and were followed for up to 12 weeks. Treatment groups included peri-operative administration of ZA (ZA group), administration of ZA at 6 weeks postop (late ZA group), or vehicle (Veh group). There was a 60% reduction in the rate of cement-bone gap formation for the ZA group (0.15 mm3/week) compared to Veh group (0.38 mm3/week, p = 0.016). Late ZA prevented further progression of gap formation but did not reverse bone loss to the level achieved in the ZA group. Micromotion from five times body weight toggle loading was positively correlated with cement-bone gap volume (p = 0.009) and negatively correlated with the amount of cement in the metaphysis (p = 0.005). Reduced new bone formation and enduring nonviable bone in the epiphysis for the ZA group were found. This suggests that low bone turnover in the epiphysis may suppress the early catabolic response due to implantation, thereby maintaining better fixation in the epiphysis. This preclinical model presents compelling supporting data documenting improved maintenance of the cement-bone fixation with the use of peri-operative bisphosphonates.
Collapse
Affiliation(s)
- Kenneth A Mann
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark A Miller
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sachin A Gandhi
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jace E Kusler
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Megan E Tatusko
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Amy E Biggs
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Megan E Oest
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Mann KA, Miller MA, Rossow JK, Tatusko ME, Horton JA, Damron TA, Oest ME. Progressive loss of implant fixation in a preclinical rat model of cemented knee arthroplasty. J Orthop Res 2021; 39:2353-2362. [PMID: 33382095 PMCID: PMC8243390 DOI: 10.1002/jor.24977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023]
Abstract
Aseptic loosening of total knee arthroplasty continues to be a challenging clinical problem. The progression of the loosening process, from the initial well-fixed component, is not fully understood. In this study, loss of fixation of cemented hemiarthroplasty was explored using 9-month-old Sprague-Dawley rats with 0, 2, 6, 12, 26 week end points. Morphological and cellular changes of cement-bone fixation were determined for regions directly below the tibial tray (epiphysis) and distal to the tray (metaphysis). Loss of fixation, with a progressive increase in cement-bone gap volume was found in the epiphysis (0.162 mm3 /week), but did not progress appreciably in the metaphysis (0.007 mm3 /week). In the epiphysis, there was an early and sustained elevation of osteoclasts adjacent to the cement border and development of a fibrous tissue layer between the cement and bone. There was early formation of bone around the cement in the metaphysis, resulting in a condensed bone layer without osteoclastic bone resorption or development of a fibrous tissue layer. Implant positioning was also an important factor in the cement-bone gap formation, with greater gap formation for implants that were placed medially on the tibial articular surface. Loss of fixation in the rat model mimicked patterns found in human arthroplasty where cement-bone gaps initiate under the tibial tray, at the periphery of the implant. This preclinical model could be used to study early biological response to cemented fixation and associated contributions of mechanical instability, component alignment, and periprosthetic inflammation.
Collapse
Affiliation(s)
- Kenneth A. Mann
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Mark A. Miller
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Jeffrey K. Rossow
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Megan E. Tatusko
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Jason A. Horton
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Timothy A. Damron
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Megan E. Oest
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| |
Collapse
|
3
|
Mann KA, Miller MA, Tatusko ME, Oest ME. Similitude of cement-bone micromechanics in cemented rat and human knee replacement. J Orthop Res 2020; 38:1529-1537. [PMID: 32167182 PMCID: PMC7293949 DOI: 10.1002/jor.24661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 02/04/2023]
Abstract
A preclinical rat knee replacement model was recently developed to explore the biological and mechanobiological changes of trabecular resorption for cement-bone interdigitated regions. The goal here was to evaluate the relevance of this model compared with human knee replacement with regards to functional micromechanics. Eight nonsurvival, cemented knee replacement surgeries were performed, the interdigitated gap morphology was quantified, and interface micromotion between cement and bone was measured for 1 to 5 bodyweight loading. Computational fluid dynamics modeling of unit cell geometries with small gaps between trabeculae and cement was used to estimate fluid flow. Gap width (3.6 μm) was substantially smaller compared with cement-bone gaps reported in human knee replacement (11.8 μm). Micromotion at the cement-bone border was also decreased for the rat knee replacement (0.48 μm), compared with human (1.97 μm), for 1 bodyweight loading. However, the micromotion-to-gap width ratio (0.19 and 0.22 for, rat and human), and estimated fluid shear stress (6.47 and 7.13 Pa, for rat and human) were similar. Replicating the fluid dynamic characteristics of cement-bone interdigitated regions in human knee replacements using preclinical models may be important to recapitulate trabecular resorption mechanisms due to proposed supraphysiologic fluid shear stress. Statement of clinical significance: local cement-bone micromotion due to joint loading may contribute to the process of clinical loosening in total joint replacements. This work shows that while micromotion and gap morphology are diminished for the rat knee model compared to human, the motion-to-gap ratio, and corresponding fluid shear stress are of similar magnitudes.
Collapse
|
4
|
Lullini G, Cammisa E, Setti S, Sassoli I, Zaffagnini S, Marcheggiani Muccioli GM. Role of pulsed electromagnetic fields after joint replacements. World J Orthop 2020; 11:285-293. [PMID: 32572365 PMCID: PMC7298453 DOI: 10.5312/wjo.v11.i6.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Although the rate of patients reporting satisfaction is generally high after joint replacement surgery, up to 23% after total hip replacement and 34% after total knee arthroplasty of treated subjects report discomfort or pain 1 year after surgery. Moreover, chronic or subacute inflammation is reported in some cases even a long time after surgery. Another open and debated issue in prosthetic surgery is implant survivorship, especially when related to good prosthesis bone ingrowth. Pulsed Electro Magnetic Fields (PEMFs) treatment, although initially recommended after total joint replacement to promote bone ingrowth and to reduce inflammation and pain, is not currently part of usual clinical practice. The purpose of this review was to analyze existing literature on PEMFs effects in joint replacement surgery and to report results of clinical studies and current indications. We selected all currently available prospective studies or RCT on the use of PEMFs in total joint replacement with the purpose of investigating effects of PEMFs on recovery, pain relief and patients’ satisfaction following hip, knee or shoulder arthroplasty. All the studies analyzed reported no adverse effects, and good patient compliance to the treatment. The available literature shows that early control of joint inflammation process in the first days after surgery through the use of PEMFs should be considered an effective completion of the surgical procedure to improve the patient’s functional recovery.
Collapse
Affiliation(s)
- Giada Lullini
- Laboratorio di Analisi del Movimento e di valutazione funzionale protesi, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Eugenio Cammisa
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Stefania Setti
- Laboratory of Clinical Biophysics, IGEA S.p.A. Clinical Biophysics, 41012 Carpi (Mo), Italy
| | - Iacopo Sassoli
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Stefano Zaffagnini
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | | |
Collapse
|
5
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
6
|
McArthur BA, Scully R, Patrick Ross F, Bostrom MPG, Falghren A. Mechanically Induced Periprosthetic Osteolysis: A Systematic Review. HSS J 2019; 15:286-296. [PMID: 31624485 PMCID: PMC6778158 DOI: 10.1007/s11420-018-9641-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Peri-prosthetic bone loss can result from chemical, biological, and mechanical factors. Mechanical stimulation via fluid pressure and flow at the bone-implant interface may be a significant cause. Evidence supporting mechanically induced osteolysis continues to grow, but there is no synthesis of published clinical and basic science data. QUESTIONS/PURPOSES We sought to review the literature on two questions: (1) What published evidence supports the concept of mechanically induced osteolysis? (2) What is the proposed mechanism of mechanically induced osteolysis, and does it differ from that of particle-induced osteolysis? METHODS A systematic review was performed of the PubMed and Web of Science databases. Additional relevant articles were recommended by the senior authors based on their expert opinion. Abstracts were reviewed and the manuscripts pertaining to the study questions were read in full. Studies showing support of mechanically induced osteolysis were quantified and findings summarized. RESULTS We identified 49 articles of experimental design supporting the hypothesis that mechanical stimulation of peri-prosthetic bone from fluid pressure and flow can induce osteolysis. While the molecular mechanisms may overlap with those implicated in particle-induced osteolysis, mechanically induced osteolysis appears to be mediated by distinct and parallel pathways. CONCLUSIONS The role of mechanical stimuli is increasingly recognized in the pathogenesis of peri-prosthetic osteolysis. Current research aims to elucidate the molecular mechanisms to better target therapeutic interventions.
Collapse
Affiliation(s)
- Benjamin A. McArthur
- Department of Surgery and Perioperative Care, Dell Medical School at the University of Texas, Texas Orthopedics Sports and Rehabilitation Associates, 4215 Benner Road, Ste. 300, Kyle, TX 78640 USA
| | - Ryan Scully
- Department of Orthopedic Surgery, George Washington University, 2300 M Street, NW, Washington, DC, 20037 USA
| | - F. Patrick Ross
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021 USA
| | | | | |
Collapse
|
7
|
Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 2018; 77:106-115. [PMID: 29981946 DOI: 10.1016/j.actbio.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
Wear-mediated osteolysis is a common complication occurring around implanted prosthesis, which ultimately leads to bone loss with mechanical instability and the need for surgical revision. At the moment, revision surgery is the only effective treatment. The aim of this study was to assess the efficacy of pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP), alone and in association, in a clinically relevant in vivo model of periprosthetic osteolysis. Titanium alloy pins were implanted intramedullary in distal femurs of male inbred rats and, after osseointegration, polyethylene particles were injected intra-articularly to induce osteolysis. Animals were divided in four groups of treatment: PEMFs, PRP, PEMFs + PRP and no treatment. Microtomography was performed during the course of experiments to monitor bone stock and microarchitecture. Histology, histomorphometry, immunohistochemistry and biomechanics were evaluated after treatments. Biophysical and biological stimulations significantly enhanced bone to implant contact, bone volume and bone microhardness and reduced fibrous capsule formation and the number of osteoclasts around implants. Among treatments, PEMFs alone and in association with PRP exerted better results than PRP alone. Present data suggest that biophysical stimulation, with or without the enrichment with platelet derived growth factors, might be a safe, mini-invasive and conservative therapy for counteracting osteolysis and prompting bone formation around implants. STATEMENT OF SIGNIFICANCE Pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP) show anabolic and anti-inflammatory effects and they are already been used in clinical practice, but separately. To date, there are no preclinical in vivo studies evaluating their combined efficacy in periprosthetic osteolysis, in bone tissue microarchitecture and in biomechanics. The aim of the present study was to evaluate the effects of PEMFs and PRP in vivo, when administered individually and in combination in the treatment of periprosthetic wear mediated ostelysis, and in restoring the osteogenetic properties of perimplant bone tissue and its biomechanical competence. The combination of PEMFs and PRP could be employed for counteracting the ostelysis process in a conservative and non surgical manner.
Collapse
|
8
|
Goodheart JR, Miller MA, Oest ME, Mann KA. Trabecular resorption patterns of cement-bone interlock regions in total knee replacements. J Orthop Res 2017; 35:2773-2780. [PMID: 28452065 PMCID: PMC5659954 DOI: 10.1002/jor.23586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED With in vivo service, there is loss of mechanical interlock between trabeculae and PMMA cement in total knee replacements. The mechanisms responsible for the loss of interlock are not known, but loss of interlock results in weaker cement-bone interfaces. The goal of this study was to determine the pattern of resorption of interdigitated bone using a series of 20 postmortem retrieved knee replacements with a wide range of time in service (3-22 years). MicroCT scans were obtained of a segment of the cement-bone interface below the tibial tray for each implant. Image processing methods were used to determine interface morphology and to identify supporting, interdigitated, resorbed, and isolated bone as a function of axial position. Overall, the amount of remaining interdigitated bone decreased with time in service (p = 0.0114). The distance from the cement border (at the extent of cement penetration into the bone bed) to 50% of the interdigitated volume decreased with time in service (p = 0.039). Isolated bone, when present, was located deep in the cement layer. Overall, resorption appears to start at the cement border and progresses into the cement layer. Initiation of trabecular resorption near the cement border may be a consequence of proximity to osteoclastic cells in the adjacent marrow space. CLINICAL SIGNIFICANCE Aseptic loosening of joint replacements remains an important clinical problem. This work explores the process and pattern of trabecular bone resorption responsible for loss of interface fixation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2773-2780, 2017.
Collapse
Affiliation(s)
- Jacklyn R. Goodheart
- Department of Orthopedic Surgery, State University of New York, Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Mark A. Miller
- Department of Orthopedic Surgery, State University of New York, Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Megan E. Oest
- Department of Orthopedic Surgery, State University of New York, Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Kenneth A. Mann
- Department of Orthopedic Surgery, State University of New York, Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, NY, 13210, USA
| |
Collapse
|
9
|
Cyndari KI, Goodheart JR, Miller MA, Oest ME, Damron TA, Mann KA. Peri-Implant Distribution of Polyethylene Debris in Postmortem-Retrieved Knee Arthroplasties: Can Polyethylene Debris Explain Loss of Cement-Bone Interlock in Successful Total Knee Arthroplasties? J Arthroplasty 2017; 32:2289-2300. [PMID: 28285038 PMCID: PMC5469692 DOI: 10.1016/j.arth.2017.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Loss of mechanical interlock between cement and bone with in vivo service has been recently quantified for functioning, nonrevised, cemented total knee arthroplasties (TKAs). The cause of interlocking trabecular resorption is not known. The goal of this study is to quantify the distribution of PE debris at the cement-bone interface and determine if polyethylene (PE) debris is locally associated with loss of interlock. METHODS Fresh, nonrevised, postmortem-retrieved TKAs (n = 8) were obtained en bloc. Laboratory-prepared constructs (n = 2) served as negative controls. The intact cement-bone interface of each proximal tibia was embedded in Spurr's resin, sectioned, and imaged under polarized light to identify birefringent PE particles. PE wear particle number density was quantified at the cement-bone interface and distal to the interface, and then compared with local loss of cement-bone interlock. RESULTS The average PE particle number density for postmortem-retrieved TKAs ranged from 8.6 (1.3) to 24.9 (3.1) particles/mm2 (standard error) but was weakly correlated with years in service. The average particle number density was twice as high as distal (>5mm) to the interface compared to at the interface. The local loss of interlock at the interface was not related to the presence, absence, or particle density of PE. CONCLUSION PE debris can migrate extensively along the cement-bone interface of well-fixed tibial components. However, the amount of local bone loss at the cement-bone interface was not correlated with the amount of PE debris at the interface, suggesting that the observed loss of trabecular interlock in these well-fixed TKAs may be due to alternative factors.
Collapse
Affiliation(s)
- Karen I Cyndari
- Department of Orthopaedic Surgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Jacklyn R Goodheart
- Department of Orthopaedic Surgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Mark A Miller
- Department of Orthopaedic Surgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Megan E Oest
- Department of Orthopaedic Surgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Timothy A Damron
- Department of Orthopaedic Surgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Kenneth A Mann
- Department of Orthopaedic Surgery, State University of New York Upstate Medical University, Syracuse, New York
| |
Collapse
|
10
|
Abstract
Clodronate is the father of bisphosphonates. For over three decades it has been subject of study in biological and clinical areas, proving to be an extremely interesting molecule from different points of view. It has been the first drug for osteoporosis that can be administered pulsatorily (once every 15 days or once a week). This, along with good tolerability, has been the first cause of its success, when there were no solid data in literature about its antifracture efficacy. There are three published studies that prove its antifracture effect: two by McCloskey published in 2004 and 2007 on BMR, and our study about fracture prevention in corticosteroids OP. In these studies a dose of 800 mg/day orally administered or 100 mg/week I.M. was used, and they are basically the same if you consider that clodronate absorption, orally administered, is on average 1.9%. However, a series of works where higher doses were used (1600 mg orally administered) with greater effectiveness on bone mass, especially in higher risk populations, lead us to consider the use of 200 mg i.m. formulation. First of all, we proved densitometric equivalence of 200 mg i.m./14 days and 100 mg i.m./week in a first study; then, in a second study, we proved a greater densitometric efficacy of 200 mg/week compared to 100 mg/week, clearer at femoral level, where the drug had not proven to prevent femoral fracture because of inadequate bone mass increase at that level. Moreover, as for ibandronate case, monthly dose was doubled compared to pivotal trial, in order to maximize the effects on femoral bone mass and therefore prevent femoral fractures. Consequently, on the basis of the risk envelope, whether it is identified according to BMD and the presence of one risk factor at least or more correctly identified through risk chart (FRAX or DeFRA), you can put forward a differential use of 100 mg i.m. and 200 mg i.m., weekly, "off-label" or every 14 days, adjusting doses in relation to fracture risk and painful symptoms gravity, as well as improving its ease of use and therefore assist compliance. Common experience and clinical and biological works have proved that clodronate has an analgesic effect that can be increased by doubling the doses. The analgesic effect is present not only with patients with fractures, but also with patients suffering from osteoarthritis or arthritis. Therefore, the drug would fit well in the therapeutic program of rheumatic patient, also because of its symptomatic effects. Clodronate at small doses (2 mg) could also have protective effects on cartilage (introduction of intra-articular formulation is expected) and at 10-100 fold higher doses it has certainly anti-inflammatory effects and more specifically antimacrophage and anticytokine effects (IL-1, IL-6, TNFalpha, PGE). These effects are amplified by putting clodronate in monolayer liposomes. This drug, therefore, has to be considered as adjuvant in arthritis therapy, whose origin can be linked to a strong osteoclastic activation caused by an increase of cytokines and the RANKL/OPG relationship. It is clear that clodronate can work on cytokine at first and on osteoclastic effector in the end. The drug has been used "off-label" for decades intravenously in complex regional pain syndrome (CRPS type 1) in relation to schemes that change according to different Authors and according to cumulative doses ranging from 3 to 5 g. The introduction on the market of the 200 mg i.m. formulation could allow to get more practical but equally effective schemes. For example, we used this scheme: 200 mg/day for 10 days and then 200 mg every other day for 20 days (cumulative dose of 4 g in a month). Said scheme can be repeated in the following months in particular cases. Results, as for efficacy and lack of relapses, show that clodronate is the leader drug for this syndrome. In recent years, relationship between costs and benefits has started to matter, especially after the creation of some algorithms, such as FRAX, that let us choose patients with a higher fracture risk in 10 years, and after pharmaceutic-economic models that let us calculate FRAX intervention threshold, on the basis of drug price and monitoring, antifracture efficacy, quality of life and how much a community can or wants to spend. In this respect, a sub-analysis of McCloskey's study on people over the age of 75, conducted on 3974 subjects, shows that clodronate is more efficient with patients with a higher fracture risk, calculated according to FRAX. Furthermore, another study by McCloskey revealed that, for a 100-pound/year drug (very similar to clodronate), 'cost effective' intervention threshold is about 7-10%. In conclusion, clodronate prevents fractures, decrease osteo-articular pain, is easy to handle, tolerable and had a great cost/benefit relationship.
Collapse
Affiliation(s)
- Bruno Frediani
- Medical and Surgical Science and Neuroscience Department, Rheumatology Section, University of Siena, O.U. of Osteo-Articular Diagnostic Procedures, Siena, Italy
| | - Ilaria Bertoldi
- Medical and Surgical Science and Neuroscience Department, Rheumatology Section, University of Siena, O.U. of Osteo-Articular Diagnostic Procedures, Siena, Italy
| |
Collapse
|
11
|
Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater 2013; 9:8046-58. [PMID: 23669623 DOI: 10.1016/j.actbio.2013.05.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 01/31/2023]
Abstract
Aseptic loosening and other wear-related complications are some of the most frequent late reasons for revision of total knee arthroplasty (TKA). Periprosthetic osteolysis (PPOL) pre-dates aseptic loosening in many cases, indicating the clinical significance of this pathogenic mechanism. A variety of implant-, surgery- and host-related factors have been delineated to explain the development of PPOL. These factors influence the development of PPOL because of changes in mechanical stresses within the vicinity of the prosthetic device, excessive wear of the polyethylene liner, and joint fluid pressure and flow acting on the peri-implant bone. The process of aseptic loosening is initially governed by factors such as implant/limb alignment, device fixation quality and muscle coordination/strength. Later, large numbers of wear particles detached from TKA trigger and perpetuate particle disease, as highlighted by progressive growth of inflammatory/granulomatous tissue around the joint cavity. An increased accumulation of osteoclasts at the bone-implant interface, impairment of osteoblast function, mechanical stresses and increased production of joint fluid contribute to bone resorption and subsequent loosening of the implant. In addition, hypersensitivity and adverse reactions to metal debris may contribute to aseptic TKA failure, but should be determined more precisely. Patient activity level appears to be the most important factor when the long-term development of PPOL is considered. Surgical technique, implant design and material factors are the most important preventative factors, because they influence both the generation of wear debris and excessive mechanical stresses. New generations of bearing surfaces and designs for TKA should carefully address these important issues in extensive preclinical studies. Currently, there is little evidence that PPOL can be prevented by pharmacological intervention.
Collapse
Affiliation(s)
- J Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, University Hospital, Palacky University Olomouc, I.P. Pavlova Str. 6, CZ-775 20 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|