1
|
Pommerehne K, Walisko J, Ebersbach A, Krull R. The antitumor antibiotic rebeccamycin-challenges and advanced approaches in production processes. Appl Microbiol Biotechnol 2019; 103:3627-3636. [PMID: 30888461 DOI: 10.1007/s00253-019-09741-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
Rebeccamycin is an antibiotic and antitumor substance isolated from the filamentous bacterium Lentzea aerocolonigenes. After its discovery, investigations of rebeccamycin focused on elucidating its structure, biological activity, and biosynthetic pathway. For potential medical application, a sufficient drug supply has to be ensured, meaning that the production process of rebeccamycin plays a major role. In addition to the natural production of rebeccamycin in L. aerocolonigenes, where the complex cell morphology is an important factor for a sufficient production, rebeccamycin can also be heterologously produced or chemically synthesized. Each of these production processes has its own challenges, and first approaches to production often lead to low final product concentrations, which is why process optimizations are performed. This review provides an overview of the production of rebeccamycin and the different approaches used for rebeccamycin formation including process optimizations.
Collapse
Affiliation(s)
- Kathrin Pommerehne
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106, Braunschweig, Germany
| | - Jana Walisko
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| | - Anna Ebersbach
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany. .,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106, Braunschweig, Germany.
| |
Collapse
|
2
|
Xia MC, Bao P, Liu AJ, Zhang SS, Peng TJ, Shen L, Yu RL, Wu XL, Li JK, Liu YD, Chen M, Qiu GZ, Zeng WM. Isolation and identification of Penicillium chrysogenum strain Y5 and its copper extraction characterization from waste printed circuit boards. J Biosci Bioeng 2018; 126:78-87. [PMID: 29573983 DOI: 10.1016/j.jbiosc.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/20/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022]
Abstract
Biohydrometallurgy is generally considered as a green technology for the recycling of industrial solid waste. In this study, an indigenous fungal strain named Y5 with the ability of high-yielding organic acids was isolated and applied in bioleaching of waste printed circuit boards (PCBs). The strain Y5 was identified as Penicillium chrysogenum by morphological and molecular identification. Meanwhile, we investigated that an optimal set of culturing conditions for the fungal growth and acids secretion was 15 g/L glucose with initial pH 5.0, temperature 25°C and shaking speed 120 rpm in shaken flasks culture. Moreover, three bioleaching processes such as one-step, two-step and spent medium processes were conducted to extract copper from waste PCBs. Spent medium bioleaching showed higher copper extraction percentage and it was 47% under 5%(w/v) pulp density. Transmission electron microscope (TEM) observation combining with energy dispersive analysis of X-rays (EDAX) showed that the leached metal ions did not obviously damage the hypha cells. All above results indicated that P.chrysogenum strain Y5 has the tolerance to metal ions, suggesting its potential in recycling of metals from waste PCBs in industry.
Collapse
Affiliation(s)
- Ming-Chen Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Peng Bao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - A-Juan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shi-Shi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Tang-Jian Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Run-Lan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xue-Ling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jiao-Kun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Yuan-Dong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Miao Chen
- CSIRO Process Science and Engineering, Clayton, Victoria 3168, Australia; Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne 3000, Australia
| | - Guan-Zhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Wei-Min Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China; CSIRO Process Science and Engineering, Clayton, Victoria 3168, Australia.
| |
Collapse
|
3
|
|
4
|
Abstract
Filamentous fungi play an important role not only in the bio-manufacturing of value-added products, but also in bioenergy and environmental research. The bioprocess manipulation of filamentous fungi is more difficult than that of other microbial species because of their different pellet morphologies and the presence of tangled mycelia under different cultivation conditions. Fungal pellets, which have the advantages of harvest ease, low fermentation broth viscosity and high yield of some proteins, have been used for a long time. Many attempts have been made to establish the relationship between pellet and product yield using quantitative approaches. Fungal pellet formation is attributed to the combination of electrostatic interactions, hydrophobicity and specific interactions from spore wall components. Electrostatic interactions result from van der Waals forces and negative charge repulsion from carboxyl groups in the spore wall structure. Electrostatic interactions are also affected by counter-ions (cations) and the physiologic conditions of spores that modify the carboxyl groups. Fungal aggregates are promoted by the hydrophobicity generated by hydrophobins, which form a hydrophobic coat that covers the spore. The specific interactions of spore wall components contribute to spore aggregation through salt bridging. A model of spore aggregation was proposed based on these forces. Additionally, some challenges were addressed, including the limitations of research techniques, the quantitative determination of forces and the complex information of biological systems, to clarify the mechanism of fungal pellet formation.
Collapse
Affiliation(s)
- Jianguo Zhang
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology and
| | - Jining Zhang
- b Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| |
Collapse
|
5
|
Walisko R, Moench-Tegeder J, Blotenberg J, Wucherpfennig T, Krull R. The Taming of the Shrew--Controlling the Morphology of Filamentous Eukaryotic and Prokaryotic Microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:1-27. [PMID: 25796624 DOI: 10.1007/10_2015_322] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the most sensitive process characteristics in the cultivation of filamentous biological systems is their complex morphology. In submerged cultures, the observed macroscopic morphology of filamentous microorganisms varies from freely dispersed mycelium to dense spherical pellets consisting of a more or less dense, branched and partially intertwined network of hyphae. Recently, the freely dispersed mycelium form has been in high demand for submerged cultivation because this morphology enhances the growth and production of several valuable products. A distinct filamentous morphology and productivity are influenced by the environment and can be controlled by inoculum concentration, spore viability, pH value, cultivation temperature, dissolved oxygen concentration, medium composition, mechanical stress or process mode as well as through the addition of inorganic salts or microparticles, which provides the opportunity to tailor a filamentous morphology. The suitable morphology for a given bioprocess varies depending on the desired product. Therefore, the advantages and disadvantages of each morphological type should be carefully evaluated for every biological system. Because of the high industrial relevance of filamentous microorganisms, research in previous years has aimed at the development of tools and techniques to characterise their growth and obtain quantitative estimates of their morphological properties. The focus of this review is on current advances in the characterisation and control of filamentous morphology with a separation of eukaryotic and prokaryotic systems. Furthermore, recent strategies to tailor the morphology through classical biochemical process parameters, morphology and genetic engineering to optimise the productivity of these filamentous systems are discussed.
Collapse
Affiliation(s)
- Robert Walisko
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany,
| | | | | | | | | |
Collapse
|
6
|
The role of volumetric power input in the growth, morphology, and production of a recombinant glycoprotein by Streptomyces lividans in shake flasks. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis. World J Microbiol Biotechnol 2013; 29:1421-9. [DOI: 10.1007/s11274-013-1305-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
8
|
|
9
|
Cai M, Zhou X, Lu J, Fan W, Zhou J, Niu C, Kang L, Sun X, Zhang Y. An integrated control strategy for the fermentation of the marine-derived fungus Aspergillus glaucus for the production of anti-cancer polyketide. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:665-671. [PMID: 22286337 DOI: 10.1007/s10126-012-9435-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
An integrated control strategy of pH, shear stress, and dissolved oxygen tension (DOT) for fermentation scale-up of the marine-derived fungus Aspergillus glaucus HB 1–19 for the production of the anti-cancer compound aspergiolide A was studied. Keeping initial pH of 6.5 and shifting pH from 6.0 to 7.0 intermittently during the production phase greatly facilitated biosynthesis of aspergiolide A in shake flask cultures. Thus, a pH-shift strategy was proposed that shifting pH to 7.0 once it went lower than 6.0 by pulsed feeding NaOH solution during the production phase in bioreactor fermentation of A. glaucus HB 1–19. As a result, aspergiolide A production in a 30-L bioreactor was increased to 37.6 mg/L, which was 48.6% higher than that in 5-L bioreactor without pH shift. Fermentation scale-up was then performed in a 500-L bioreactor on the basis of an integrated criterion of near-same impeller tip velocity of early phase, DOT levels, and pH shift. The production of aspergiolide A was successfully obtained as 32.0 mg/L, which was well maintained during the process scale-up. This work offers useful information for process development of large-scale production of marine microbial metabolites.
Collapse
Affiliation(s)
- Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Comparative Metabolomic Study of Penicillium chrysogenum During Pilot and Industrial Penicillin Fermentations. Appl Biochem Biotechnol 2012; 168:1223-38. [DOI: 10.1007/s12010-012-9852-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/20/2012] [Indexed: 01/26/2023]
|
11
|
Zheng Y, Yu X, Zeng J, Chen S. Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:50. [PMID: 22824058 PMCID: PMC3463428 DOI: 10.1186/1754-6834-5-50] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/02/2012] [Indexed: 05/25/2023]
Abstract
BACKGROUND Lipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosic materials. Thus, identification of filamentous fungal strains capable of utilizing lignocellulosic hydrolysates for lipid accumulation is critical to improve the process and reduce the production cost. RESULTS The growth performances of eleven filamentous fungi were investigated when cultured on glucose and xylose. Their dry cell weights, lipid contents and fatty acid profiles were determined. Six fungal strains with high lipid contents were selected to culture with the hydrolysate from dilute sulfuric acid pretreatment of wheat straw. The results showed that all the selected fungal strains were able to grow on both detoxified liquid hydrolysate (DLH) and non-detoxified liquid hydrolysate (NDLH). The highest lipid content of 39.4% was obtained by Mortierella isabellina on NDLH. In addition, NDLH with some precipitate could help M. isabellina form pellets with an average diameter of 0.11 mm. CONCLUSION This study demonstrated the possibility of fungal lipid production from lignocellulosic biomass. M. isabellina was the best lipid producer grown on lignocellulosic hydrolysates among the tested filamentous fungi, because it could not only accumulate oils with a high content by directly utilizing NDLH to simplify the fermentation process, but also form proper pellets to benefit the downstream harvesting. Considering the yield and cost, fungal lipids from lignocellulosic biomass are promising alternative sources for biodiesel production.
Collapse
Affiliation(s)
- Yubin Zheng
- Department of Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA, 99164-6120, USA
| | - Xiaochen Yu
- Department of Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA, 99164-6120, USA
| | - Jijiao Zeng
- Department of Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA, 99164-6120, USA
| | - Shulin Chen
- Department of Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA, 99164-6120, USA
| |
Collapse
|
12
|
Posch AE, Spadiut O, Herwig C. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum. Microb Cell Fact 2012; 11:88. [PMID: 22727013 PMCID: PMC3495681 DOI: 10.1186/1475-2859-11-88] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/07/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. RESULTS This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. CONCLUSIONS The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding.
Collapse
Affiliation(s)
- Andreas E Posch
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, Vienna University of Technology, A-1060, Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, Vienna University of Technology, A-1060, Vienna, Austria
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, Vienna University of Technology, A-1060, Vienna, Austria
| |
Collapse
|
13
|
Significance of seed culture methods on mycelial morphology and production of a novel anti-cancer anthraquinone by marine mangrove endophytic fungus Halorosellinia sp. (No. 1403). Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations. Appl Microbiol Biotechnol 2010; 89:1193-202. [DOI: 10.1007/s00253-010-2910-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
|
15
|
Actinomycetes scale-up for the production of the antibacterial, nocathiacin. Biotechnol Prog 2009; 25:176-88. [DOI: 10.1002/btpr.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Junker B, Walker A, Hesse M, Lester M, Vesey D, Christensen J, Burgess B, Connors N. Pilot-scale process development and scale up for antifungal production. Bioprocess Biosyst Eng 2008; 32:443-58. [PMID: 18853195 DOI: 10.1007/s00449-008-0264-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 09/18/2008] [Indexed: 11/25/2022]
Abstract
A pilot-scale fermentation was developed for an antifungal compound produced by a filamentous fungus. Replacement of galactose with lactose (20-fold cost savings) and a threefold phosphate reduction (15 to 5 g/L) improved productivity 2.5-fold. Addition of supplements--glycine, cobalt chloride, and trace elements--resulted in a further twofold productivity increase, greater process robustness, and less foaming which reduced antifoam addition tenfold (30 to <3 mL/L). Mid-cycle lactose limitations were addressed by raising initial lactose levels (40 to 120 g/L) resulting in another twofold productivity increase. Overall, peak titers increased tenfold from 45 +/- 9 to 448 +/- 39 mg/L, and productivities improved from 3 to 25 mg/L day. Despite its high productivity, process scale up was challenged by high broth viscosity (5,000-6,000 cP at 16.8 s(-1)). Gassed power requirements at the 600 L scale (4.7 kW/1,000 L) exceeded available power at the 15,000 L scale (3.0 kW/1,000 L), and broth transfer to the downstream isolation facility was hindered. Mid-cycle broth dilution with up to five 10 vol% additions of 12 wt% lactose solution or whole medium-reduced viscosity three- to fivefold (1,000-1,500 cP at 16.8 s(-1)), gassed power within scale-up limits (2.5 kW/1,000 L), and peak titer by up to 45%. The process was scaled up to the 15,000 L working volume based on constant aeration rate (vvm) and peak impeller tip speed, raising superficial velocities at similar shear. This strategy maximized mass transfer rates at target gassed power per unit volume levels, and along with controlled broth viscosity, precluded multiple dilution additions. A final titer of 333 mg/L with one dilution addition was achieved, somewhat lower than expected, likely owing to inhibition from some unmeasured volatile compound (not believed to be carbon dioxide) during an extended period of high back-pressure in the early production phase.
Collapse
Affiliation(s)
- Beth Junker
- Fermentation Development and Operations, Merck Research Laboratories, Rahway, NJ, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nutritional and engineering aspects of microbial process development. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 65:291, 293-328. [PMID: 18084919 DOI: 10.1007/978-3-7643-8117-2_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Today we use many drugs produced by microorganisms. However, when these drugs were discovered it was found that the yields were low and a substantial effort had to be put in to develop commercially viable processes. A key part of this endeavor was the studies of the nutritional and the engineering parameters. In this chapter, the basic principles of optimizing the nutritional and engineering aspect of the production process are described with appropriate examples. It was found that two critical components of nutritional medium, carbon and nitrogen source regulated the synthesis of the compounds of interest. Rapidly utilizable carbon source such as glucose supported the growth but led to catabolite repression and alternative carbon sources or methods of addition had to be devised. Inorganic nitrogen sources led to undesirable changes in pH of the medium. Organic nitrogen sources could influence the yields positively or negatively and had to be chosen carefully. Essential nutrients like phosphates often inhibited the synthesis and its concentration had to be maintained below the inhibitory levels. On many occasions, trace nutrients like metal ions and vitamins were found to be critical for good production. Temperature and pH were important environmental variables and their optimum values had to be determined. The media were designed and optimized initially with 'one variable at a time' approach and later with experimental design based on statistics. The latter approach is preferred because it is economical, considers interactions between medium components and allows rapid optimization of the process. The engineering aspects like aeration, agitation, medium sterilization, heat transfer, process monitoring and control, become critical as the process is scaled-up to the production size. Aeration and agitation are probably the most important variables. In many processes dissolved oxygen concentration had to be maintained above a critical value to obtain the best yields. The rheological properties of fermentation broth significantly affect the aeration and mixing efficiency. The removal of heat from the large fermentors can be difficult under certain conditions. However, new designs of impellers, availability of sensors to monitor important physiological and process variables and advent of computers have facilitated successful scale-up of fermentation processes.
Collapse
|
18
|
Junker B, Walker A, Connors N, Seeley A, Masurekar P, Hesse M. Production of indole diterpenes by Aspergillus alliaceus. Biotechnol Bioeng 2006; 95:919-37. [PMID: 16878329 DOI: 10.1002/bit.21053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Production of two related indole diterpenes (differing by a dimethyl leucine side chain) by Aspergillus alliaceus was improved through several pilot scale fermentations. Media were optimized through focus primarily on initial increases, as well as mid-cycle additions, of carbon and nitrogen sources. Fermentation conditions were improved by varying ventilation conditions using various combinations of air flowrate and back-pressure set points. Production improvements were quantified based on total indole diterpene concentration as well as the ratio of the major-to-minor by-product components. Those changes with a positive substantial impact primarily on total indole diterpene concentration included early cycle glycerol shots and enhanced ventilation conditions (high air flowrate, low back-pressure). Those changes with a significant impact primarily on ratio included higher initial cerelose, soybean oil, monosodium glutamate, tryptophan, or ammonium sulfate concentrations, higher broth pH, and enhanced ventilation conditions. A few changes (higher initial glycerol and monosodium glutamate concentrations) resulted in less notable and desirable titer or ratio changes when implemented individually, but they were adopted to more fully realize the impact of other improvements or to simplify processing. Overall, total indole diterpene titers were improved at the 600 L pilot scale from 125-175 mg/L with a ratio of about 2.1 to 200-260 mg/L with a ratio of about 3.3-4.5. Thus, the ability to optimize total indole diterpene titer and/or ratio readily exists for secondary metabolite production using Aspergillus cultures.
Collapse
Affiliation(s)
- B Junker
- Fermentation Development and Operations, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, USA
| | | | | | | | | | | |
Collapse
|
19
|
Junker B, Lester M, Leporati J, Schmitt J, Kovatch M, Borysewicz S, Maciejak W, Seeley A, Hesse M, Connors N, Brix T, Creveling E, Salmon P. Sustainable reduction of bioreactor contamination in an industrial fermentation pilot plant. J Biosci Bioeng 2006; 102:251-68. [PMID: 17116571 DOI: 10.1263/jbb.102.251] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 04/01/2006] [Indexed: 11/17/2022]
Abstract
Facility experience primarily in drug-oriented fermentation equipment (producing small molecules such as secondary metabolites, bioconversions, and enzymes) and, to a lesser extent, in biologics-oriented fermentation equipment (producing large molecules such as recombinant proteins and microbial vaccines) in an industrial fermentation pilot plant over the past 15 years is described. Potential approaches for equipment design and maintenance, operational procedures, validation/verification testing, medium selection, culture purity/sterility analysis, and contamination investigation are presented, and those approaches implemented are identified. Failure data collected for pilot plant operation for nearly 15 years are presented and best practices for documentation and tracking are outlined. This analysis does not exhaustively discuss available design, operational and procedural options; rather it selectively presents what has been determined to be beneficial in an industrial pilot plant setting. Literature references have been incorporated to provide background and context where appropriate.
Collapse
Affiliation(s)
- Beth Junker
- RY810-127, Merck Research Laboratories, Fermentation Development and Operations, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Junker B. Measurement of bubble and pellet size distributions: past and current image analysis technology. Bioprocess Biosyst Eng 2006; 29:185-206. [PMID: 16855822 DOI: 10.1007/s00449-006-0070-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/18/2006] [Indexed: 11/25/2022]
Abstract
Measurements of bubble and pellet size distributions are useful for biochemical process optimizations. The accuracy, representation, and simplicity of these measurements improve when the measurement is performed on-line and in situ rather than off-line using a sample. Historical and currently available measurement systems for photographic methods are summarized for bubble and pellet (morphology) measurement applications. Applications to cells, mycelia, and pellets measurements have driven key technological developments that have been applied for bubble measurements. Measurement trade-offs exist to maximize accuracy, extend range, and attain reasonable cycle times. Mathematical characterization of distributions using standard statistical techniques is straightforward, facilitating data presentation and analysis. For the specific application of bubble size distributions, selected bioreactor operating parameters and physicochemical conditions alter distributions. Empirical relationships have been established in some cases where sufficient data have been collected. In addition, parameters and conditions with substantial effects on bubble size distributions were identified and their relative effects quantified. This information was used to guide required accuracy and precision targets for bubble size distribution measurements from newly developed novel on-line and in situ bubble measurement devices.
Collapse
Affiliation(s)
- Beth Junker
- Fermentation and Development Operations, Merck Research Laboratories, RY810-127, PO Box 2000, Rahway, NJ 07065, USA.
| |
Collapse
|