1
|
Shejawale D, Lavania J, Muthuganesan N, Jeyarani T, Rastogi NK, Subramanian R. Alternate solvent for soybean oil extraction based on extractability and membrane solvent recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34038-7. [PMID: 38969883 DOI: 10.1007/s11356-024-34038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Ethyl acetate, acetone, 2-propanol, 1-propanol, and ethanol were screened among the class 3 category solvents as an alternative to hexane based on operational and occupational safety and bio-renewability potential. All five solvents exhibited higher extractability (22.3 to 23.2%) than hexane (21.5%) with soybean flour. Additionally, there was no significant difference in the fatty acid and triacylglycerol (TAG) composition of the oils extracted using alternate solvents and hexane, indicating the oil quality was not affected. More importantly, ethyl acetate (2.1%) resulted in a marginally higher yield of TAG, while 2-propanol showed a nearly equal yield to hexane. Further, membrane desolventizing was attempted to mitigate the limitations of higher thermal energy requirements. One of the polydimethylsiloxane membranes exhibited good selectivity (TAG rejection 85.8%) and acceptable flux (59.3 L·m-2·h-1) with an ethyl acetate miscella system. Under plant-simulated recirculation conditions, a two-stage membrane process reduced the oil content in permeate to 2.5%. The study revealed that ethyl acetate could potentially replace hexane, considering its higher TAG extractability and suitability for the membrane-augmented solvent recycling process in the extraction plants.
Collapse
Affiliation(s)
- Deepali Shejawale
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Jyoti Lavania
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Nageswaran Muthuganesan
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Trade and International Cooperation Division, Food Safety and Standards Authority of India, New Delhi, 110002, India
| | - Thangaraj Jeyarani
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Navin Kumar Rastogi
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Rangaswamy Subramanian
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Tian X, Wang X, Fang M, Yu L, Ma F, Wang X, Zhang L, Li P. Nutrients in rice bran oil and their nutritional functions: a review. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38856105 DOI: 10.1080/10408398.2024.2352530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Rice is an important food crop throughout the world. Rice bran, the outer layer of rice grain, is a by-product generated during the rice milling process. Rice bran oil (RBO) is extracted from rice bran and has also become increasingly popular. RBO is considered to be one of the healthiest cooking oils due to its balanced proportion of fatty acids, as well as high content of γ-oryzanol together with phytosterols, vitamin E, wax ester, trace and macro elements, carotenoids, and phenolics. The existence of these compounds provides RBO with various functions, including hypotensive and hypolipidemic functions, antioxidant, anticancer, and immunomodulatory functions, antidiabetic function, anti-inflammatory and anti-allergenic functions, hepatoprotective activity function, and in preventing neurological diseases. Recently, research on the nutrients in RBO focused on the detection of nutrients, functions, and processing methods. However, the processing and utilization of rice bran remain sufficiently ineffective, and the processing steps will also affect the nutrients in RBO to different degrees. Therefore, this review focuses on the contents and nutritional functions of different nutrients in RBO and the possible effects of processing methods on nutrients.
Collapse
Affiliation(s)
- Xuan Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan, China
| | - Xueyan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan, China
| | - Mengxue Fang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan, China
| | - Li Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan, China
| | - Fei Ma
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan, China
| | - Xuefang Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
3
|
LI D, ZHANG C, ZHANG HM, ZHANG DJ, ZUO F. Separation of γ-oryzanol from immature rice seeds by nanofiltration membrane. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dan LI
- HeilongJiang BaYi Agricultural University, People's Republic of China
| | - Chao ZHANG
- HeilongJiang BaYi Agricultural University, People's Republic of China
| | - Hui-min ZHANG
- HeilongJiang BaYi Agricultural University, People's Republic of China
| | - Dong-jie ZHANG
- HeilongJiang BaYi Agricultural University, People's Republic of China
| | - Feng ZUO
- HeilongJiang BaYi Agricultural University, People's Republic of China; Ministry of Education, People's Republic of China
| |
Collapse
|
4
|
Rangaswamy S, Kumar GS, Kuppusamy C. Membrane technology for vegetable oil processing-Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:5015-5042. [PMID: 34431206 DOI: 10.1111/1541-4337.12825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
Vegetable oil processing has been identified as one of the potential nonaqueous applications of membrane technology. Membrane-based processing has been largely attempted on individual steps of the conventional refining process with reasonable success. With the advent of organic-solvent-nanofiltration, membrane desolventizing of hexane oil miscella has received greater attention, revitalizing the prospects of integrated membrane processing. A practical evaluation of membrane augmented desolventizing revealed that approximately 65% energy savings towards solvent evaporation could be achieved in an industrial environment. Further, a pragmatic appraisal advocated that an integrated membrane process with a focus on pretreatment and desolventizing along with physical refining would be a desirable approach for fortifying the benefits. The present review intends to channelize the efforts to overcome the current limitations and highlights the importance of developing better membranes, process evaluation under appropriate practical conditions, and developing suitable cleaning protocols for stable performance. In the case of alternate solvents to hexane, membrane solvent recovery would be a favorable approach to overcome the limitation of associated higher thermal energy requirements. Nevertheless, solvent selection should be based on a composite evaluation of extraction and membrane desolventizing, specific to the type of oil. Finally, a comprehensive process scheme has been proposed to realize the benefits in extraction-refining plants. In this direction, a few pilot demonstration plants need to be established and operated for 1-2 years to understand and overcome the practical difficulties and limitations of the technology, leading to its industrial adoption.
Collapse
Affiliation(s)
- Subramanian Rangaswamy
- Department of Food Engineering, Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gopika S Kumar
- Department of Food Engineering, Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chezhiyan Kuppusamy
- Department of Food Engineering, Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
5
|
A comparative investigation on physicochemical properties, chemical composition, and in vitro antioxidant activities of rice bran oils from different japonica rice (Oryza sativa L.) varieties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Niazmand R, Razavi SMA, Farhoosh R. Colloid-Enhanced Ultrafiltration of Canola Oil: Effect of Process Conditions and MWCO on Flux, Fouling and Rejections. J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Razieh Niazmand
- Department of Food Chemistry; Research Institute of Food Science and Technology (RIFST); Mashhad Iran
| | | | - Reza Farhoosh
- Department of Food Science and Technology; Ferdowsi University of Mashhad (FUM); Mashhad Iran
| |
Collapse
|
7
|
Friedman M. Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10626-10641. [PMID: 24175575 DOI: 10.1021/jf403635v] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Rice plants produce bioactive rice brans and hulls that have been reported to have numerous health-promoting effects in cells, animals, and humans. The main objective of this review is to consolidate and integrate the widely scattered information on the composition and the antioxidative, anti-inflammatory, and immunostimulating effects of rice brans from different rice cultivars, rice bran oils derived from rice brans, rice hulls, liquid rice hull smoke derived from rice hulls, and some of their bioactive compounds. As part of this effort, this paper also presents brief summaries on the preparation of health-promoting foods including bread, corn flakes, frankfurters, ice cream, noodles, pasta, tortillas, and zero-trans-fat shortening as well as industrial products such bioethanol and biodiesel fuels. Also covered are antibiotic, antiallergic, anticarcinogenic, antidiabetic, cardiovascular, allelochemical, and other beneficial effects and the mechanisms of the bioactivities. The results show that food-compatible and safe formulations with desirable nutritional and biological properties can be used to develop new multifunctional foods as well as bioethanol and biodiesel fuel. The overlapping aspects are expected to contribute to a better understanding of the potential impact of the described health-promoting potential of the rice-derived brans, oils, and hulls in food and medicine. Such an understanding will enhance nutrition and health and benefit the agricultural and industrial economies.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , 800 Buchanan Street, Albany, California 94710, United States
| |
Collapse
|
8
|
Liu M, Yang F, Shi H, Akoh CC, Yu LL. Preparative separation of triterpene alcohol ferulates from rice bran oil using a high performance counter-current chromatography. Food Chem 2013; 139:919-24. [PMID: 23561190 DOI: 10.1016/j.foodchem.2013.01.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/12/2012] [Accepted: 01/27/2013] [Indexed: 11/24/2022]
Abstract
A novel method for the separation of two major triterpene alcohol ferulates from rice bran oil (RBO) was developed using a high performance counter-current chromatography (HPCCC). A two-phase solvent system of n-hexane-acetonitrile (1:1, v/v) was applied to purify cycloartenyl ferulate (CAF) and 24-methylene cycloartanyl ferulate (24-mCAF) from RBO. The yields were 20.50±2.60 mg CAF and 12.62±1.15 mg 24-mCAF from 390 mg RBO through a two-step separation procedure. The purities of the two compounds were 97.97±0.90% and 95.50±0.75%, respectively, as determined by high performance liquid chromatography (HPLC). Their chemical structures were confirmed by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and (1)H, (13)C and 2D nuclear magnetic resonance (NMR). This represents the first report on direct separation of CAF and 24-mCAF from RBO by HPCCC.
Collapse
Affiliation(s)
- Man Liu
- Institute of Food and Nutraceutical Science, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
9
|
Angelis A, Urbain A, Halabalaki M, Aligiannis N, Skaltsounis AL. One-step isolation of γ-oryzanol from rice bran oil by non-aqueous hydrostatic countercurrent chromatography. J Sep Sci 2011; 34:2528-37. [PMID: 21780286 DOI: 10.1002/jssc.201100192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 06/03/2011] [Accepted: 06/05/2011] [Indexed: 11/11/2022]
Abstract
The value-added γ-oryzanol was purified in one step from crude rice bran oil (RBO) using a preparative hydrostatic countercurrent chromatography (hydrostatic CCC) method, operating in the dual mode. The fractionation was performed using a non-aqueous biphasic solvent system consisting of heptane-acetonitrile-butanol (1.8:1.4:0.7, v/v/v), leading rapidly to the target compounds. Transfer of the analytical CCC method to large-scale isolation was also carried out yielding a high quantity-high purity fraction of γ-oryzanol. In addition, a fraction of hydroxylated triterpene alcohol ferulates (polar γ-oryzanol) was clearly separated and obtained. Furthermore, a fast HPLC-APCI(±)-HRMS method was developed and applied for the identification of γ-oryzanol as well as the polar γ-oryzanol in RBO and the resulting fractions. The purity of γ-oryzanol fraction was estimated as 97% based on HPLC-APCI-HRMS analysis.
Collapse
Affiliation(s)
- Apostolis Angelis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
10
|
Bergman C, Goffman F, Chen MH. Evaluation of Antioxidant, Lipid, and Protein Fractions of Accessions ofOryzaSpecies. Cereal Chem 2011. [DOI: 10.1094/cchem-04-10-0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- C. Bergman
- UNLV, Food and Beverage, 4505 Maryland Parkway, Las Vegas, NV 89154
- Corresponding author. E-mail:
| | - F. Goffman
- UNLV, Food and Beverage, 4505 Maryland Parkway, Las Vegas, NV 89154
| | - M.-H. Chen
- UNLV, Food and Beverage, 4505 Maryland Parkway, Las Vegas, NV 89154
| |
Collapse
|
11
|
Sereewatthanawut I, Baptista I, Boam A, Hodgson A, Livingston A. Nanofiltration process for the nutritional enrichment and refining of rice bran oil. J FOOD ENG 2011. [DOI: 10.1016/j.jfoodeng.2010.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Niazmand R, Farhoosh R, Razavi SMA, Mousavi SM, Noghabi MS. Investigation of quality and stability of canola oil refined by adding chemical agents and membrane processing. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.profoo.2011.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Optimization of Physical Refining to Produce Rice Bran Oil with Light Color and High Oryzanol Content. J AM OIL CHEM SOC 2010. [DOI: 10.1007/s11746-010-1606-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
|