1
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
2
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|
3
|
Yu X, Wang G, Huang S, Ma Y, Xia L. Engineering plants for aphid resistance: current status and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2065-83. [PMID: 25151153 DOI: 10.1007/s00122-014-2371-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/25/2014] [Indexed: 05/19/2023]
Abstract
The current status of development of transgenic plants for improved aphid resistance, and the pros and cons of different strategies are reviewed and future perspectives are proposed. Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic plants engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. In this review, the distribution of major aphid species and their damages on crop plants, the so far isolated aphid-resistance genes and their applications in developments of transgenic plants for improved aphid resistance, and the pros and cons of these strategies are reviewed and future perspectives are proposed. Although the transgenic plants developed through expressing aphid-resistant genes, manipulating plant secondary metabolism and plant-mediated RNAi strategy have been demonstrated to confer improved aphid resistance to some degree. So far, no aphid-resistant transgenic crop plants have ever been commercialized. This commentary is intended to be a helpful insight into the generation and future commercialization of aphid-resistant transgenic crops in a global context.
Collapse
Affiliation(s)
- Xiudao Yu
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | | | | | | | | |
Collapse
|
4
|
Melnykova NM, Mykhalkiv LM, Mamenko PM, Kots SY. The areas of application for plant lectins. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.00082a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- N. M. Melnykova
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
| | - L. M. Mykhalkiv
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
| | - P. M. Mamenko
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
| | - S. Ya. Kots
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
5
|
Kai G, Ji Q, Lu Y, Qian Z, Cui L. Expression of Monstera deliciosa agglutinin gene (mda) in tobacco confers resistance to peach-potato aphids. Integr Biol (Camb) 2012; 4:937-44. [PMID: 22660606 DOI: 10.1039/c2ib20038d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aphid is one of the most serious pests that causes damage to crops worldwide. Lectins from Araceae plant had been proved useful to control the aphid. Herein, the full-length cDNA of Monstera deliciosa agglutinin (mda) gene was cloned and then introduced into tobacco and the influence of the expression of mda in transgenic tobacco against peach-potato aphids (Myzus persicae) was investigated. Among 92 regenerated plants, 59 positive tobacco lines were obtained. Real-time PCR assays and aphid bioassay test revealed that there is a positive correlation between the expression level of mda and the inhibitory effect on peach-potato aphids. The average anti-pests ability of mda transgenic tobacco was 74%, which was higher than that of other reported lectins from Araceae plant. These results indicated that MDA is one of promising insect resistance proteins selected for the control of peach-potato aphids.
Collapse
Affiliation(s)
- Guoyin Kai
- Research and Development Center of Plant Resources, Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China.
| | | | | | | | | |
Collapse
|
6
|
Jin S, Zhang X, Daniell H. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:313-27. [PMID: 22077160 PMCID: PMC3468414 DOI: 10.1111/j.1467-7652.2011.00663.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Broad spectrum protection against different insects and pathogens requires multigene engineering. However, such broad spectrum protection against biotic stress is provided by a single protein in some medicinal plants. Therefore, tobacco chloroplasts were transformed with the agglutinin gene from Pinellia ternata (pta), a widely cultivated Chinese medicinal herb. Pinellia ternata agglutinin (PTA) was expressed up to 9.2% of total soluble protein in mature leaves. Purified PTA showed similar hemagglutination activity as snowdrop lectin. Artificial diet with purified PTA from transplastomic plants showed marked and broad insecticidal activity. In planta bioassays conducted with T0 or T1 generation PTA lines showed that the growth of aphid Myzus persicae (Sulzer) was reduced by 89%-92% when compared with untransformed (UT) plants. Similarly, the larval survival and total population of whitefly (Bemisia tabaci) on transplastomic lines were reduced by 91%-93% when compared with UT plants. This is indeed the first report of lectin controlling whitefly infestation. When transplastomic PTA leaves were fed to corn earworm (Helicoverpa zea), tobacco budworm (Heliothis virescens) or the beet armyworm (spodoptera exigua), 100% mortality was observed against all these three insects. In planta bioassays revealed Erwinia population to be 10,000-fold higher in control than in PTA lines. Similar results were observed with tobacco mosaic virus (TMV) challenge. Therefore, broad spectrum resistance to homopteran (sap-sucking), Lepidopteran insects as well as anti-bacterial or anti-viral activity observed in PTA lines provides a new option to engineer protection against biotic stress by hyper-expression of an unique protein that is naturally present in a medicinal plant.
Collapse
Affiliation(s)
- Shuangxia Jin
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
7
|
Expression of the zga agglutinin gene in tobacco can enhance its anti-pest ability for peach-potato aphid (Myzus persica). ACTA PHYSIOLOGIAE PLANTARUM 2011. [DOI: 10.1007/s11738-011-0715-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Macedo MLR, Freire MDGM, Kubo CEG, Parra JRP. Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:24-33. [PMID: 20692365 DOI: 10.1016/j.cbpc.2010.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops.
Collapse
Affiliation(s)
- Maria Lígia R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Departamento de Tecnologia de Alimentos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.
| | | | | | | |
Collapse
|
9
|
Gangopadhyay M, Dewanjee S, Chakraborty D, Bhattacharya S. Encapsulation and Regeneration of In Vitro Derived Zephyranthes Grandiflora: An Effective Way for Exchange of Germplasm. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An attempt was made to develop a protocol for the preparation of synthetic seeds using in vitro regenerated, genetically identical bulbs of Zephyranthes grandiflora. Encapsulation was standardized with 4% sodium alginate and 1% sucrose for uniform bulb size with high conversion potential. An optimum storage temperature was found to be 4°C. Synthetic seeds were germinated in MS medium supplemented with benzyladenine (2 mg dm−3) and rooted in the presence of indole-3-butyric acid (1 mg dm−3) in MS medium. Well-rooted plants were transferred to the experimental field with 80% survival after hardening. This study elucidated an efficient technique for exchange of germplasm and ex situ conservation method.
Collapse
Affiliation(s)
- Moumita Gangopadhyay
- Medicinal Plant Laboratory, Department of Botany, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Saikat Dewanjee
- Department of Pharmaceutical Technology, Jadavpur University, Raja SC Mullick Road, Kolkata 700032, India
| | - Dipjyoti Chakraborty
- Plant Molecular & Cellular Genetics, Bose Institute, P 1/12, CIT Road, Scheme VIIM, Kolkata 700 054, India
| | - Sabita Bhattacharya
- Medicinal Plant Laboratory, Department of Botany, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| |
Collapse
|