1
|
Luna IS, Souza TAD, da Silva MS, Franca Rodrigues KAD, Scotti L, Scotti MT, Mendonça-Junior FJB. Computer-Aided drug design of new 2-amino-thiophene derivatives as anti-leishmanial agents. Eur J Med Chem 2023; 250:115223. [PMID: 36848847 DOI: 10.1016/j.ejmech.2023.115223] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
The leishmaniasis is a neglected disease caused by a group of protozoan parasites from the genus Leishmania whose treatment is limited, obsolete, toxic, and ineffective in certain cases. These characteristics motivate researchers worldwide to plan new therapeutic alternatives for the treatment of leishmaniasis, where the use of cheminformatics tools applied to computer-assisted drug design has allowed research to make great advances in the search for new drugs candidates. In this study, a series of 2-amino-thiophene (2-AT) derivatives was screened virtually using QSAR tools, ADMET filters and prediction models, allowing direct the synthesis of compounds, which were evaluated in vitro against promastigotes and axenic amastigotes of Leishmania amazonensis. The combination of different descriptors and machine learning methods led to obtaining robust and predictive QSAR models, which was obtained from a dataset composed of 1862 compounds extracted from the ChEMBL database, with correct classification rates ranging from 0.53 (for amastigotes) to 0.91 (for promastigotes), allowing to select eleven 2-AT derivatives, which do not violate Lipinski's rules, exhibit good druglikeness, and with probability ≤70% of potential activity against the two evolutionary forms of the parasite. All compounds were properly synthesized and 8 of them were shown to be active at least against one of the evolutionary forms of the parasite with IC50 values lower than 10 μM, being more active than the reference drug meglumine antimoniate, and showing low or no citotoxicity against macrophage J774.A1 for the most part. Compounds 8CN and DCN-83, respectively, are the most active against promastigote and amastigote forms, with IC50 values of 1.20 and 0.71 μM, and selectivity indexes (SI) of 36.58 and 119.33. Structure Activity Relationship (SAR) study was carried out and allowed to identify some favorable and/or essential substitution patterns for the leishmanial activity of 2-AT derivatives. Taken together, these findings demonstrate that the use of ligand-based virtual screening proved to be quite effective and saved time, effort, and money in the selection of potential anti-leishmanial agents, and confirm, once again that 2-AT derivatives are promising hit compounds for the development of new anti-leishmanial agents.
Collapse
Affiliation(s)
- Isadora Silva Luna
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB, Brazil; Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Thalisson Amorim de Souza
- Multiuser Laboratory Center of Characterization and Analysis, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Marcelo Sobral da Silva
- Multiuser Laboratory Center of Characterization and Analysis, Federal University of Paraiba, João Pessoa, PB, Brazil
| | | | - Luciana Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Francisco Jaime Bezerra Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB, Brazil; Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB, Brazil.
| |
Collapse
|
2
|
Peña-Guerrero J, Fernández-Rubio C, Burguete-Mikeo A, El-Dirany R, García-Sosa AT, Nguewa P. Discovery and Validation of Lmj_04_BRCT Domain, a Novel Therapeutic Target: Identification of Candidate Drugs for Leishmaniasis. Int J Mol Sci 2021; 22:ijms221910493. [PMID: 34638841 PMCID: PMC8508789 DOI: 10.3390/ijms221910493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
Since many of the currently available antileishmanial treatments exhibit toxicity, low effectiveness, and resistance, search and validation of new therapeutic targets allowing the development of innovative drugs have become a worldwide priority. This work presents a structure-based drug discovery strategy to validate the Lmj_04_BRCT domain as a novel therapeutic target in Leishmania spp. The structure of this domain was explored using homology modeling, virtual screening, and molecular dynamics studies. Candidate compounds were validated in vitro using promastigotes of Leishmania major, L. amazonensis, and L. infantum, as well as primary mouse macrophages infected with L. major. The novel inhibitor CPE2 emerged as the most active of a group of compounds against Leishmania, being able to significantly reduce the viability of promastigotes. CPE2 was also active against the intracellular forms of the parasites and significantly reduced parasite burden in murine macrophages without exhibiting toxicity in host cells. Furthermore, L. major promastigotes treated with CPE2 showed significant lower expression levels of several genes (α-tubulin, Cyclin CYCA, and Yip1) related to proliferation and treatment resistance. Our in silico and in vitro studies suggest that the Lmj_04_BRCT domain and its here disclosed inhibitors are new potential therapeutic options against leishmaniasis.
Collapse
Affiliation(s)
- José Peña-Guerrero
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Aroia Burguete-Mikeo
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Rima El-Dirany
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Alfonso T. García-Sosa
- Department of Molecular Technology, Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
- Correspondence: (A.T.G.-S.); (P.N.); Tel.: +372-737-5270 (A.T.G.-S.); +34-948-425-600 (ext. 6434) (P.N.)
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
- Correspondence: (A.T.G.-S.); (P.N.); Tel.: +372-737-5270 (A.T.G.-S.); +34-948-425-600 (ext. 6434) (P.N.)
| |
Collapse
|
3
|
Adinehbeigi K, Shaddel M, Khalili S, Zakeri A. Suramin could block the activity of Arabinono-1, 4-lactone oxidase enzyme from Leishmania donovani: structure-based screening and molecular dynamics analyses. Trans R Soc Trop Med Hyg 2020; 114:162-172. [PMID: 31667504 DOI: 10.1093/trstmh/trz091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/07/2019] [Accepted: 08/02/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Leishmania donovani, a parasitic protozoan causing visceral leishmaniasis, can lead to a dangerous and often fatal disease in humans. Current treatment for leishmaniasis may have severe side effects, low efficacy and high cost, hence an immediate need for new efficient drugs is essential. Arabinono-1, 4-lactone oxidase enzyme from Leishmania donovani (LdALO), which catalyzes the last step of the ascorbate biosynthesis pathway, has been considered as a potential target for antileishmanial drugs design. METHODS The current study was performed with an in silico approach to predict novel inhibitory molecules against the LdALO enzyme. Various modeling and refinement processes were employed to obtain a reliable 3D structure. RESULTS The best LdALO model with the highest qualitative model energy analysis score was predicted by the Robetta server and subsequently refined by 3D refine and ModLoop servers. The high quality of the final LdALO model was confirmed using model assessment software. Based on docking analysis results, we predicted 10 inhibitory molecules of a US Food and Drug Administration-approved library, with appropriate criteria regarding energy binding and interaction with the main functionally active sites of LdALO, indicating that they could be significant targets for further drug design investigations against L. donovani. CONCLUSION Suramin is used to treat the first stage of African sleeping sickness and its mechanism of action is unknown. Our results showed that suramin was the best-predicted inhibitor compound for LdALO enzyme activity.
Collapse
Affiliation(s)
- Keivan Adinehbeigi
- Department of Parasitology and Mycology, Faculty of Medicine, AJA University of Medical Sciences, Etemad Zadeh Street, Fatemi Street, Tehran, Iran
| | - Minoo Shaddel
- Department of Parasitology and Mycology, Faculty of Medicine, AJA University of Medical Sciences, Etemad Zadeh Street, Fatemi Street, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Science, Shahid Rajaee University, Tehran, Iran
| | - Alireza Zakeri
- Department of Biology Science, Shahid Rajaee University, Tehran, Iran
| |
Collapse
|
4
|
Raj S, Sasidharan S, Dubey VK, Saudagar P. Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation. PLoS One 2019; 14:e0221331. [PMID: 31425543 PMCID: PMC6699710 DOI: 10.1371/journal.pone.0221331] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis caused by obligate intracellular parasites of genus Leishmania is one of the most neglected tropical diseases threatening 350 million people worldwide. Protein kinases have drawn much attention as potential drug targets due to their important role in various cellular processes. In Leishmania sp. mitogen-activated protein kinase 4 is essential for the parasite survival because of its involvement in various regulatory, apoptotic and developmental pathways. The current study reveals the identification of natural inhibitors of L. donovani mitogen-activated protein kinase-4 (LdMPK4). We have performed in silico docking of 110 natural inhibitors of Leishmania parasite that have been reported earlier and identified two compounds Genistein (GEN) and Chrysin (CHY). The homology model of LdMPK4 was developed, followed by binding affinity studies, and pharmacokinetic properties of the inhibitors were calculated by maintaining ATP as a standard molecule. The modelled structure was deposited in the protein model database with PMDB ID: PM0080988. Molecular dynamic simulation of the enzyme-inhibitor complex along with the free energy calculations over 50 ns showed that GEN and CHY are more stable in their binding. These two molecules, GEN and CHY, can be considered as lead molecules for targeting LdMPK4 enzyme and could emerge as potential LdMPK4 inhibitors.
Collapse
Affiliation(s)
- Shweta Raj
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology-Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| |
Collapse
|
5
|
Li T, Ding T, Li J. Medicinal Purposes: Bioactive Metabolites from Marine-derived Organisms. Mini Rev Med Chem 2019; 19:138-164. [PMID: 28969543 DOI: 10.2174/1389557517666170927113143] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 06/17/2017] [Indexed: 12/20/2022]
Abstract
The environment of marine occupies about 95% biosphere of the world and it can be a critical source of bioactive compounds for humans to be explored. Special environment such as high salt, high pressure, low temperature, low nutrition and no light, etc. has made the production of bioactive substances different from terrestrial organisms. Natural ingredients secreted by marine-derived bacteria, fungi, actinomycetes, Cyanobacteria and other organisms have been separated as active pharmacophore. A number of evidences have demonstrated that bioactive ingredients isolated from marine organisms can be other means to discover novel medicines, since enormous natural compounds from marine environment were specified to be anticancer, antibacterial, antifungal, antitumor, cytotoxic, cytostatic, anti-inflammatory, antiviral agents, etc. Although considerable progress is being made within the field of chemical synthesis and engineering biosynthesis of bioactive compounds, marine environment still remains the richest and the most diverse sources for new drugs. This paper reviewed the natural compounds discovered recently from metabolites of marine organisms, which possess distinct chemical structures that may form the basis for the synthesis of new drugs to combat resistant pathogens of human life. With developing sciences and technologies, marine-derived bioactive compounds are still being found, showing the hope of solving the problems of human survival and sustainable development of resources and environment.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning, 116600, China
| | - Ting Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China
| |
Collapse
|
6
|
Prakash J, Yadav S, Saha G, Chiranjivi AK, Kumar S, Sasidharan S, Saudagar P, Dubey VK. Episomal expression of human glutathione reductase (HuGR) in Leishmania sheds light on evolutionary pressure for unique redox metabolism pathway: Impaired stress tolerance ability of Leishmania donovani. Int J Biol Macromol 2018; 121:498-507. [PMID: 30316767 DOI: 10.1016/j.ijbiomac.2018.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
Abstract
Trypanothione based redox metabolism is unique to the Trypanosomatida family. Despite extensive studies on redox metabolism of Leishmania parasites, a prominent question of why Leishmania adopt this unique redox pathway remains elusive. We have episomally expressed human glutathione reductase (HuGR) in Leishmania donovani (LdGR+) and investigated its effect. LdGR+ strain has slower growth compared to the wild type (Ld) indicating decreased survival ability of the strain. Further, LdGR+ strain showed enhanced accumulation of intracellular reactive oxygen species (ROS) and more sensitivity to the anti-leishmanial drug, Miltefosine, inferring increased stress level. In contrast, the expression analyses of genes specific to redox metabolism were increased significantly in LdGR+ strain compared to wild type. Lower infectivity index of the LdGR+ strain substantiated the above findings and indicated that the expression of HuGR reduces the stress tolerance ability of the parasite. From molecular docking studies with HuGR, it was observed that oxidized trypanothione (TS2) binds much better than oxidized glutathione (GS2). These results also give us hints that the parasite is losing infectivity potential due to an overall increase in intracellular stress caused with the expression of HuGR, showcasing a possible role of evolutionary pressure on the Leishmania parasites posed by HuGR.
Collapse
Affiliation(s)
- Jay Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sunita Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India
| | - Gundappa Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Adarsh Kumar Chiranjivi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suresh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India.
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India.
| |
Collapse
|
7
|
MicroRNA expression profiling of dibenzalacetone (DBA) treated intracellular amastigotes of Leishmania donovani. Exp Parasitol 2018; 193:5-19. [DOI: 10.1016/j.exppara.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
|
8
|
Pulido SA, Nguyen VH, Alzate JF, Cedeño DL, Makurath MA, Ríos-Vásquez A, Duque-Benítez SM, Jones MA, Robledo SM, Friesen JA. Insights into the phosphatidylcholine and phosphatidylethanolamine biosynthetic pathways in Leishmania parasites and characterization of a choline kinase from Leishmania infantum. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:45-54. [PMID: 28754315 DOI: 10.1016/j.cbpb.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
The protozoan parasite Leishmania infantum is a causative agent of the disease visceral leishmaniasis, which can be fatal if not properly treated. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthesis pathways are attractive targets for new antileishmanial compounds since these Leishmania cell membrane phospholipids are important for parasite morphology and physiology. In this work we observed Leishmania synthesize PC and PE from extracellular choline and ethanolamine, respectively, suggesting the presence of CDP-choline and CDP-ethanolamine pathways. In addition, Leishmania converted PE to PC, indicating the parasite possesses phosphatidylethanolamine N-methyltransferase (PEMT) activity. The first step in the biosynthesis of PC or PE requires the phosphorylation of choline or ethanolamine by a kinase. We cloned the gene encoding a putative choline/ethanolamine kinase from Leishmania infantum and expressed and purified the encoded recombinant protein. The enzyme possesses choline kinase activity with a Vmax of 3.52μmol/min/mg and an apparent Km value of 0.089mM with respect to choline. The enzyme can also phosphorylate ethanolamine in vitro, but the apparent Km for ethanolamine is 850-fold greater than for choline. In an effort to probe requirements for small molecule inhibition of Leishmania choline kinase, the recombinant enzyme was evaluated for the ability to be inhibited by novel quaternary ammonium salts. The most effective inhibitor was N-iodomethyl-N,N,-dimethyl-N-(6,6-diphenyl hex-5-en-1-yle) ammonium iodide, denoted compound C6. In the presence of 4mM compound C6, the Vmax/Km decreased to approximately 1% of the wild-type catalytic efficiency. In addition, in Leishmania cells treated with compound C6 choline transport was inhibited.
Collapse
Affiliation(s)
- Sergio A Pulido
- Program for Study and Control of Tropical Diseases-PECET, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Victoria H Nguyen
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | - Juan F Alzate
- Parasitology Group, School of Medicine, University of Antioquia, Medellin, Colombia
| | - David L Cedeño
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | - Monika A Makurath
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | | | | | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | - Sara M Robledo
- Program for Study and Control of Tropical Diseases-PECET, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Jon A Friesen
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
| |
Collapse
|
9
|
Singh S, Kumari E, Bhardwaj R, Kumar R, Dubey VK. Molecular events leading to death of Leishmania donovani under spermidine starvation after hypericin treatment. Chem Biol Drug Des 2017; 90:962-971. [PMID: 28509385 DOI: 10.1111/cbdd.13022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 11/30/2022]
Abstract
We have previously reported that the hypericin treatment caused spermidine starvation and death of Leishmania parasite. Here, we report different molecular events under spermidine starvation and potential role of spermidine in processes other than redox homeostasis of the parasite. We have analyzed changes in expression of several genes by using quantitative gene expression analysis. Further, these changes at molecular level were also confirmed by using biochemical and cellular studies. Altered expression of several genes involved in redox metabolism, hypusine modification of eIF5A, DNA repair pathway and autophagy was observed. There was decrease in Sir2RP expression after hypericin treatment and this decrease has been found to be associated with induced ROS due to hypericin treatment as it has been rescued by either trypanothione or spermidine supplementation. Translation initiation in the parasite was decreased upon spermidine starvation. We also observed increased AMPK expression upon hypericin treatment. The increase in intracellular ATP and NAD+ levels as well as decrease in Sir2RP expression of the parasite are cytoprotective mechanism towards generated ROS due to hypericin treatment possibly by inducing autophagy as indicated by increase in autophagy related gene expression and acridine orange staining. However, the autophagy needs to be established using more rigorous methodologies.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ekta Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ruchika Bhardwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ritesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
10
|
Optimization of extraction method and evaluation of antileishmanial activity of oil and nanoemulsions of Pterodon pubescens benth. fruit extracts. Exp Parasitol 2016; 170:252-260. [DOI: 10.1016/j.exppara.2016.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023]
|
11
|
Understanding the importance of conservative hypothetical protein LdBPK_070020 in Leishmania donovani and its role in subsistence of the parasite. Arch Biochem Biophys 2016; 596:10-21. [PMID: 26926257 DOI: 10.1016/j.abb.2016.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 11/24/2022]
Abstract
The genome of Leishmania donovani, the causative agent of visceral leishmaniasis, codes for approximately 65% of both conserved and non-conserved hypothetical proteins. Studies on 'conserved hypothetical' proteins are expected to reveal not only new and crucial aspects of Leishmania biochemistry, but it could also lead to discovery of novel drug candidates. Conserved hypothetical protein, LdBPK_070020, is a 31.14 kDa protein, encoded by an 810 bp gene. BLAST analysis of LdBPK_070020, performed against NCBI non-redundant database, showed 80-99% similarity with conserved hypothetical proteins of Leishmania belonging to other species. Using homologues recombination method, we have performed gene knockout of LdBPK_070020 and effects of the same were investigated on the parasite. The gene knocked out strain shows significant retardation in growth with respect to wild type. Detailed biochemical studies indicated towards important role of LdBPK_070020 in the parasite survival and growth.
Collapse
|
12
|
Das M, Singh S, Dubey VK. Novel Inhibitors of Ornithine Decarboxylase ofLeishmaniaParasite (LdODC): The Parasite ResistsLdODC Inhibition by Overexpression of Spermidine Synthase. Chem Biol Drug Des 2015; 87:352-60. [DOI: 10.1111/cbdd.12665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Mousumi Das
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Shalini Singh
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Assam 781039 India
| |
Collapse
|
13
|
Synthesis, antileishmanial activity and cytotoxicity of 2,3-diaryl- and 2,3,8-trisubstituted imidazo[1,2-a]pyrazines. Eur J Med Chem 2015; 103:381-95. [DOI: 10.1016/j.ejmech.2015.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
|
14
|
Machado-Silva A, Guimarães PPG, Tavares CAP, Sinisterra RD. New perspectives for leishmaniasis chemotherapy over current anti-leishmanial drugs: a patent landscape. Expert Opin Ther Pat 2014; 25:247-60. [PMID: 25530084 DOI: 10.1517/13543776.2014.993969] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Although leishmaniasis is estimated to cause the ninth largest disease burden among individual infectious diseases, it is still one of the most neglected diseases in terms of drug development. Current drugs are highly toxic, resistance is common and compliance of patients to treatment is low, as treatment is long and drug price is high. AREAS COVERED In this review, the authors carried out a patent landscape in search for new perspectives for leishmaniasis therapy. This search encompassed patent documents having priority date between 1994 and 2014. Selected compounds were compared to current anti-leishmanial drugs regarding efficacy and toxicity, when experimental data were available. EXPERT OPINION Most patents related to drugs for leishmaniasis have not been produced by the pharmaceutical industry but rather by public research institutes or by universities, and the majority of the inventions disclosed are still in preclinical phase. There is an urgent need to find new ways of funding research for leishmaniasis drugs, incentivizing product development partnerships and pushing forward innovation.
Collapse
Affiliation(s)
- Alice Machado-Silva
- Universidade Federal de Minas Gerais, Instituto de Ciências Exatas,Departamento de Química , Av. Antonio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte-MG , Brazil +55 31 3409 5778 ; +55 31 3409 5700 ;
| | | | | | | |
Collapse
|
15
|
Probing the molecular mechanism of hypericin-induced parasite death provides insight into the role of spermidine beyond redox metabolism in Leishmania donovani. Antimicrob Agents Chemother 2014; 59:15-24. [PMID: 25313212 DOI: 10.1128/aac.04169-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hypericin, a natural compound from Hypericum perforatum (St. John's wort), has been identified as a specific inhibitor of Leishmania donovani spermidine synthase (LdSS) using integrated computational and biochemical approaches. Hypericin showed in vitro inhibition of recombinant LdSS enzyme activity. The in vivo estimation of spermidine levels in Leishmania promastigotes after hypericin treatment showed significant decreases in the spermidine pools of the parasites, indicating target specificity of the inhibitor molecule. The inhibitor, hypericin, showed significant antileishmanial activity, and the mode of death showed necrosis-like features. Further, decreased trypanothione levels and increased glutathione levels with elevated reactive oxygen species (ROS) levels were observed after hypericin treatment. Supplementation with trypanothione in the medium with hypericin treatment restored in vivo trypanothione levels and ROS levels but could not prevent necrosis-like death of the parasites. However, supplementation with spermidine in the medium with hypericin treatment restored in vivo spermidine levels and parasite death was prevented to a large extent. The data overall suggest that the parasite death due to spermidine starvation as a result of LdSS inhibition is not related to elevated levels of reactive oxygen species. This suggests the involvement of spermidine in processes other than redox metabolism in Leishmania parasites. Moreover, the work provides a novel scaffold, i.e., hypericin, as a potent antileishmanial molecule.
Collapse
|
16
|
Gundampati RK, Sahu S, Shukla A, Pandey RK, Patel M, Banik RM, Jagannadham MV. Tryparedoxin peroxidase of Leishmania braziliensis: homology modeling and inhibitory effects of flavonoids for anti-leishmanial activity. Bioinformation 2014; 10:353-7. [PMID: 25097378 PMCID: PMC4110426 DOI: 10.6026/97320630010353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/04/2014] [Indexed: 11/23/2022] Open
Abstract
Inhibition of the Tryparedoxin peroxidase interaction has been becomes a new therapeutic strategy in leishmaniasis. Docking analysis was carried out to study the effects of quercetin and taxifolin on Tryparedoxin Peroxidase (TryP). Tryparedoxin peroxidase of Trypanosomatidae functions as antioxidants through their Peroxidase and peroxynitrite reductase activities. The 3D models of Tryparedoxin Peroxidase of Leishmania braziliensis (L. braziliensis TryP) was modeled using the template Tryparedoxin Peroxidase I from Leishmania Major (L. Major TryPI) (PDB ID: 3TUE). Further, we evaluated for TryP inhibitory activity of flavonoids such as quercetin and taxifolin using in silico docking studies. Docking results showed the binding energies of - 11.8601and -8.0851 for that quercetin and taxifolin respectively. Flavonoids contributed better L. braziliensis TryP inhibitory activity because of its structural parameters. Thus, from our in silico studies we identify that quercetin and taxifolin posses anti-leishmanial acitivities mediated through TryP inhibition mechanism.
Collapse
Affiliation(s)
- Ravi Kumar Gundampati
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Shraddha Sahu
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Ankita Shukla
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rajesh Kumar Pandey
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Monika Patel
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rathindra Mohan Banik
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | | |
Collapse
|
17
|
Parameswaran S, Saudagar P, Dubey VK, Patra S. Discovery of novel anti-leishmanial agents targeting LdLip3 lipase. J Mol Graph Model 2014; 49:68-79. [DOI: 10.1016/j.jmgm.2014.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 10/27/2022]
|
18
|
Silva JSFE, Galvao TF, Pereira MG, Silva MT. Treatment of American tegumentary leishmaniasis in special populations: a summary of evidence. Rev Soc Bras Med Trop 2013; 46:669-77. [DOI: 10.1590/0037-8682-0104-2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/31/2013] [Indexed: 01/16/2023] Open
|
19
|
Design and exploratory data analysis of a second generation of dendrimer prodrugs potentially antichagasic and leishmanicide. Mol Divers 2013; 17:711-20. [DOI: 10.1007/s11030-013-9467-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023]
|
20
|
Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 2013; 169:262-78. [PMID: 23958059 DOI: 10.1016/j.micres.2013.07.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/29/2013] [Accepted: 07/22/2013] [Indexed: 01/03/2023]
Abstract
Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.
Collapse
|
21
|
Gundampati RK, Sahu S, Sonkar KS, Debnath M, Jagannadha MV. In silico Studies on Complete Inhibition of Trypanothione Reductase of Leishmania Infantum by γ-sitosterol and Antcin-A: Novel Target for Anti-leishmanial Activity. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajbmb.2013.322.328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Homology modeling of LmxMPK4 of Leishmania mexicana and virtual screening of potent inhibitors against it. Interdiscip Sci 2013; 5:136-44. [DOI: 10.1007/s12539-013-0164-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 01/11/2013] [Accepted: 02/17/2013] [Indexed: 10/26/2022]
|
23
|
Granados-Falla D, Coy-Barrera C, Cuca L, Delgado G. <i>Seco</i>-limonoid 11<i>α</i>,19<i>β</i>-dihydroxy-7-acetoxy-7- deoxoichangin promotes the resolution of <i>Leishmania panamensis</i> infection. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.42a041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Shukla AK, Patra S, Dubey VK. Nanospheres encapsulating anti-leishmanial drugs for their specific macrophage targeting, reduced toxicity, and deliberate intracellular release. Vector Borne Zoonotic Dis 2012; 12:953-60. [PMID: 22925019 DOI: 10.1089/vbz.2011.0948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A).
Collapse
Affiliation(s)
- Anil Kumar Shukla
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | | | | |
Collapse
|
25
|
Shukla AK, Patra S, Dubey VK. Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite. Eur J Med Chem 2012; 54:49-58. [DOI: 10.1016/j.ejmech.2012.04.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 11/29/2022]
|
26
|
Chakraborty D, Saravanan P, Patra S, Dubey VK. Studies on ornithine decarboxylase of Leishmania donovani: structure modeling and inhibitor docking. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0035-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Venkatesan SK, Dubey VK. Footprinting of inhibitor interactions of in silico identified inhibitors of trypanothione reductase of Leishmania parasite. ScientificWorldJournal 2012; 2012:963658. [PMID: 22550471 PMCID: PMC3322522 DOI: 10.1100/2012/963658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
Structure-based virtual screening of NCI Diversity set II compounds was performed to indentify novel inhibitor scaffolds of trypanothione reductase (TR) from Leishmania infantum. The top 50 ranked hits were clustered using the AuPoSOM tool. Majority of the top-ranked compounds were Tricyclic. Clustering of hits yielded four major clusters each comprising varying number of subclusters differing in their mode of binding and orientation in the active site. Moreover, for the first time, we report selected alkaloids and dibenzothiazepines as inhibitors of Leishmania infantum TR. The mode of binding observed among the clusters also potentiates the probable in vitro inhibition kinetics and aids in defining key interaction which might contribute to the inhibition of enzymatic reduction of T[S] 2. The method provides scope for automation and integration into the virtual screening process employing docking softwares, for clustering the small molecule inhibitors based upon protein-ligand interactions.
Collapse
Affiliation(s)
- Santhosh K Venkatesan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | | |
Collapse
|
28
|
Lopes MS, de Souza Pietra RC, Borgati TF, Romeiro CF, Júnior PA, Romanha AJ, Alves RJ, Souza-Fagundes EM, Fernandes APS, de Oliveira RB. Synthesis and evaluation of the anti parasitic activity of aromatic nitro compounds. Eur J Med Chem 2011; 46:5443-7. [DOI: 10.1016/j.ejmech.2011.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/27/2011] [Accepted: 09/01/2011] [Indexed: 11/29/2022]
|
29
|
Screening natural products database for identification of potential antileishmanial chemotherapeutic agents. Interdiscip Sci 2011; 3:217-31. [DOI: 10.1007/s12539-011-0101-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 02/28/2011] [Accepted: 03/11/2011] [Indexed: 10/17/2022]
|
30
|
Leishmanicidal effect of Spiranthera odoratíssima (Rutaceae) and its isolated alkaloid skimmianine occurs by a nitric oxide dependent mechanism. Parasitology 2011; 138:1224-33. [PMID: 21810308 DOI: 10.1017/s0031182011001168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Leishmaniasis is one of the neglected diseases. High cost, systemic toxicity, and diminished efficacy due to development of resistance by the parasites has a negative impact on the current treatment options. Thus, the search for a new, effective and safer anti-leishmanial drug becomes of paramount importance. Compounds derived from natural products may be a better and cheaper source in this regard. This study evaluated the in vitro anti-leishmanial activity of Spiranthera odoratíssima (Rutaceae) fractions and isolated compounds, using promastigote and amastigote forms of different Leishmania species. J774 A.1 macrophage was used as the parasite host cell for the in vitro assays. Evaluations of cytoxicity, nitric oxide (NO), interleukin-10 and in silico analysis were carried out. In vitro experiments showed that the fruit hexanic fraction (Fhf) and its alkaloid skimmianine (Skm) have a significant (P<0·001) effect against L. braziliensis. This anti-L. braziliensis activity of Fhf and Skm was due to increased production of NO and attenuation of IL-10 production in the macrophages at concentrations ranging from 1·6 to 40·0 μg/ml. The in silico assay demonstrated significant interaction between Skm and amino acid residues of NOS2. Skm is thus a promising drug candidate for L. braziliensis due to its potent immunomodulatory activity.
Collapse
|
31
|
Duncan R, Gannavaram S, Dey R, Debrabant A, Lakhal-Naouar I, Nakhasi HL. Identification and characterization of genes involved in leishmania pathogenesis: the potential for drug target selection. Mol Biol Int 2011; 2011:428486. [PMID: 22091403 PMCID: PMC3200065 DOI: 10.4061/2011/428486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/26/2011] [Accepted: 04/28/2011] [Indexed: 12/14/2022] Open
Abstract
Identifying and characterizing Leishmania donovani genes and the proteins they encode for their role in pathogenesis can reveal the value of this approach for finding new drug targets. Effective drug targets are likely to be proteins differentially expressed or required in the amastigote life cycle stage found in the patient. Several examples and their potential for chemotherapeutic disruption are presented. A pathway nearly ubiquitous in living cells targeted by anticancer drugs, the ubiquitin system, is examined. New findings in ubiquitin and ubiquitin-like modifiers in Leishmania show how disruption of those pathways could point to additional drug targets. The programmed cell death pathway, now recognized among protozoan parasites, is reviewed for some of its components and evidence that suggests they could be targeted for antiparasitic drug therapy. Finally, the endoplasmic reticulum quality control system is involved in secretion of many virulence factors. How disruptions in this pathway reduce virulence as evidence for potential drug targets is presented.
Collapse
Affiliation(s)
- Robert Duncan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
32
|
Shukla AK, Patra S, Dubey VK. Deciphering molecular mechanism underlying antileishmanial activity of Nyctanthes arbortristis, an Indian medicinal plant. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:996-998. [PMID: 21291983 DOI: 10.1016/j.jep.2011.01.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/14/2010] [Accepted: 01/25/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nyctanthes arbortristis L. (Oleaceae) is widely used in the traditional medicine of India. The plant is shown to have antibacterial and antileishmanial activities. AIM OF THE STUDY Evaluation of iridoid glucosides from the plant as inhibitor of trypanothione reductase (TryR), a validated drug target enzyme of the Leishmania parasite. The study contributes towards understanding mechanism of antileishmanial effect of the plant. MATERIALS AND METHODS TryR of Leishmania parasite is expressed and purified. Iridoid glucosides are isolated from the plant and tested as inhibitor of TryR enzyme of the parasite. RESULTS Inhibitory constant (K(i)) of various iridoid glucosides ranges from 3.24±0.05 μM to 6.49±0.05 μM. Thus, the molecular mechanism underlying antileishmanial activity of these compounds is mediated through inhibition of TryR. CONCLUSION The current study also points out towards potential application of iridoid glucosides as novel drugs against the disease.
Collapse
Affiliation(s)
- Anil Kumar Shukla
- Department of Biotechnology, Indian Institute of Technology Guwahati, Assam-781039, India
| | | | | |
Collapse
|
33
|
Shukla AK, Patra S, Dubey VK. Biophysical and Folding Parameters of Trypanothione Reductase from Leishmania infantum. Appl Biochem Biotechnol 2011; 165:13-23. [DOI: 10.1007/s12010-011-9229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
34
|
Shukla AK, Patra S, Dubey VK. Evaluation of selected antitumor agents as subversive substrate and potential inhibitor of trypanothione reductase: an alternative approach for chemotherapy of Leishmaniasis. Mol Cell Biochem 2011; 352:261-70. [PMID: 21359528 DOI: 10.1007/s11010-011-0762-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|
35
|
Saravanan P, Venkatesan SK, Mohan CG, Patra S, Dubey VK. Mitogen-activated protein kinase 4 of Leishmania parasite as a therapeutic target. Eur J Med Chem 2010; 45:5662-70. [PMID: 20884088 DOI: 10.1016/j.ejmech.2010.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
Protein kinases are important regulators of many different cellular processes such as transcriptional control, cell cycle progression and differentiation, and have drawn much attention as potential drug targets. Leishmania mexicana mitogen-activated protein kinase 4 (LmxMPK4) is crucial for the survival of the parasite. As the crystal structure of the enzyme is not known, we have used bioinformatics techniques to model LmxMPK4 structure. The current study reveals conservation of all sequence and structural motifs of LmxMPK4. Study shows mitogen-activated protein kinases are highly conserved throughout different Leishmania species and significant divergence is observed towards mammalian mitogen-activated protein kinases. Additionally, using virtual docking methods, we have identified inhibitors for LmxMPK4. The sequence and structure analysis results were helpful in identifying the ligand binding sites and molecular function of the Leishmania specific mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Parameswaran Saravanan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | | | | | | |
Collapse
|