1
|
Zheng X, Jiang J, Wang C, Hua Y, Huang H, Xu Y, Wei P, Tao J, Cao P, Kang Z, Li X, Gao Q, Chen Q. NRAMP6c plays a key role in plant cadmium accumulation and resistance in tobacco (Nicotiana tabacum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115885. [PMID: 38194857 DOI: 10.1016/j.ecoenv.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Tobacco plants (Nicotiana tabacum L.) exhibit considerable potential for phytoremediation of soil cadmium (Cd) pollutants, owing to their substantial biomass and efficient metal accumulation capabilities. The reduction of Cd accumulation in tobacco holds promise for minimizing Cd intake in individuals exposed to cigar smoking. NRAMP transporters are pivotal in the processes of Cd accumulation and resistance in plants; however, limited research has explored the functions of NRAMPs in tobacco plants. In this investigation, we focused on NtNRAMP6c, one of the three homologs of NRAMP6 in tobacco. We observed a robust induction of NtNRAMP6c expression in response to both Cd toxicity and iron (Fe) deficiency, with the highest expression levels detected in the roots. Subsequent subcellular localization and heterologous expression analyses disclosed that NtNRAMP6c functions as a plasma membrane-localized Cd transporter. Moreover, its overexpression significantly heightened the sensitivity of yeast cells to Cd toxicity. Through CRISPR-Cas9-mediated knockout of NtNRAMP6c, we achieved a reduction in Cd accumulation and an enhancement in Cd resistance in tobacco plants. Comparative transcriptomic analysis unveiled substantial alterations in the transcriptional profiles of genes associated with metal ion transport, photosynthesis, and macromolecule catabolism upon NtNRAMP6c knockout. Furthermore, our study employed plant metabolomics and rhizosphere metagenomics to demonstrate that NtNRAMP6c knockout led to changes in phytohormone homeostasis, as well as shifts in the composition and abundance of microbial communities. These findings bear significant biological implications for the utilization of tobacco in phytoremediation strategies targeting Cd pollutants in contaminated soils, and concurrently, in mitigating Cd accumulation in tobacco production destined for cigar consumption.
Collapse
Affiliation(s)
- Xueao Zheng
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, Henan Province 450001, China; Beijing Life Science Academy (BLSA), Beijing 102209, China.
| | - Jiarui Jiang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, Yunnan Province 650000, China.
| | - Chen Wang
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, Henan Province 450001, China; Beijing Life Science Academy (BLSA), Beijing 102209, China.
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Haitao Huang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, Yunnan Province 650000, China.
| | - Yalong Xu
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, Henan Province 450001, China; Beijing Life Science Academy (BLSA), Beijing 102209, China.
| | - Pan Wei
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, Henan Province 450001, China; Beijing Life Science Academy (BLSA), Beijing 102209, China.
| | - Jiemeng Tao
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, Henan Province 450001, China; Beijing Life Science Academy (BLSA), Beijing 102209, China.
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, Henan Province 450001, China; Beijing Life Science Academy (BLSA), Beijing 102209, China.
| | - Zhengzhong Kang
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, Henan Province 450001, China; Beijing Life Science Academy (BLSA), Beijing 102209, China.
| | - Xuemei Li
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, Yunnan Province 650000, China.
| | - Qian Gao
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, Yunnan Province 650000, China.
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, Henan Province 450001, China; Beijing Life Science Academy (BLSA), Beijing 102209, China.
| |
Collapse
|
2
|
Wang Y, Wei Z, Fan J, Song X, Xing S. Hyper-expression of GFP-fused active hFGF21 in tobacco chloroplasts. Protein Expr Purif 2023; 208-209:106271. [PMID: 37084839 DOI: 10.1016/j.pep.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Human fibroblast growth factor 21 (hFGF21) is a promising candidate for metabolic diseases. In this study, a tobacco chloroplast transformation vector, pWYP21406, was constructed that consisted of codon-optimized encoding gene hFGF21 fused with GFP at its 5' terminal; it was driven by the promoter of plastid rRNA operon (Prrn) and terminated by the terminator of plastid rps16 gene (Trps16). Spectinomycin-resistant gene (aadA) was the marker and placed in the same cistron between hFGF21 and the terminator Trps16. Transplastomic plants were generated by the biolistic bombardment method and proven to be homoplastic by Southern blotting analysis. The expression of GFP was detected under ultraviolet light and a laser confocal microscope. The expression of GFP-hFGF21 was confirmed by immunoblotting and quantified by enzyme-linked immunosorbnent assay (ELISA). The accumulation of GFP-hFGF21 was confirmed to be 12.44 ± 0.45% of the total soluble protein (i.e., 1.9232 ± 0.0673 g kg-1 of fresh weight). GFP-hFGF21 promoted the proliferation of hepatoma cell line HepG2, inducing the expression of glucose transporter 1 in hepatoma HepG2 cells and improving glucose uptake. These results suggested that a chloroplast expression is a promising approach for the production of bioactive recombinant hFGF21.
Collapse
Affiliation(s)
- Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Zhengyi Wei
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China; Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jieying Fan
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Shaochen Xing
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
3
|
Hou HW, Bishop CA, Huckauf J, Broer I, Klaus S, Nausch H, Buyel JF. Seed- and leaf-based expression of FGF21-transferrin fusion proteins for oral delivery and treatment of non-alcoholic steatohepatitis. FRONTIERS IN PLANT SCIENCE 2022; 13:998596. [PMID: 36247628 PMCID: PMC9557105 DOI: 10.3389/fpls.2022.998596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a global disease with no effective medication. The fibroblast growth factor 21 (FGF21) can reverse this liver dysfunction, but requires targeted delivery to the liver, which can be achieved via oral administration. Therefore, we fused FGF21 to transferrin (Tf) via a furin cleavage site (F), to promote uptake from the intestine into the portal vein, yielding FGF21-F-Tf, and established its production in both seeds and leaves of commercial Nicotiana tabacum cultivars, compared their expression profile and tested the bioavailability and bioactivity in feeding studies. Since biopharmaceuticals need to be produced in a contained environment, e.g., greenhouses in case of plants, the seed production was increased in this setting from 239 to 380 g m-2 a-1 seed mass with costs of 1.64 € g-1 by side branch induction, whereas leaves yielded 8,193 g m-2 a-1 leave mass at 0.19 € g-1. FGF21-F-Tf expression in transgenic seeds and leaves yielded 6.7 and 5.6 mg kg-1 intact fusion protein, but also 4.5 and 2.3 mg kg-1 additional Tf degradation products. Removing the furin site and introducing the liver-targeting peptide PLUS doubled accumulation of intact FGF21-transferrin fusion protein when transiently expressed in Nicotiana benthamiana from 0.8 to 1.6 mg kg-1, whereas truncation of transferrin (nTf338) and reversing the order of FGF21 and nTf338 increased the accumulation to 2.1 mg kg-1 and decreased the degradation products to 7% for nTf338-FGF21-PLUS. Application of partially purified nTf338-FGF21-PLUS to FGF21-/- mice by oral gavage proved its transfer from the intestine into the blood circulation and acutely affected hepatic mRNA expression. Hence, the medication of NASH via oral delivery of nTf338-FGF21-PLUS containing plants seems possible.
Collapse
Affiliation(s)
- Hsuan-Wu Hou
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Christopher A. Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jana Huckauf
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Inge Broer
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Henrik Nausch
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes F. Buyel
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
4
|
Fan J, Wang Y, Huang S, Xing S, Wei Z. Production of active human FGF21 using tobacco mosaic virus-based transient expression system. Growth Factors 2021; 39:37-44. [PMID: 35188043 DOI: 10.1080/08977194.2022.2038148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fibroblast growth factor (FGF) family has a wide range of metabolic processes. FGF21 exerts critical physiological functions in clinical application. This study aimed to explore a convenient and highly efficient approach for rhFGF21 expression using TMV-TES. Firstly, the vector pTTEV-GFP was constructed, followed by optimisation of the expression parameters in Nicotiana benthamiana. Then, the rhFGF21 encoding gene harbouring vector pTTEV-rhFGF21 was constructed. Agrobacterium-mediated vacuum infiltration was performed with the optimised parameters and the expression of rhFGF21 was confirmed by the immunoblotting analysis. ELISA revealed that the protein accumulation of rhFGF21 accounts for 0.11% of total soluble proteins. The biological activity was evaluated and the results suggested that tobacco-expressed rhFGF21 could stimulate the glucose uptake in swiss 3T3-L1 adipocytes, which was similar to the activity of commercial products, suggesting its native biological activity. Therefore, using TMV-TES to express rhFGF21 will be a feasible approach for the mass production of rhFGF21.
Collapse
Affiliation(s)
- Jieying Fan
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Shuang Huang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|