1
|
Deng Y, Li CJ, Zhang J, Liu WH, Yu LY, Zhang YQ. Extensive genomic study characterizing three Paracoccaceae populations and revealing Pseudogemmobacter lacusdianii sp. nov. and Paracoccus broussonetiae sp. nov. Microbiol Spectr 2024; 12:e0108824. [PMID: 39329474 PMCID: PMC11537045 DOI: 10.1128/spectrum.01088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024] Open
Abstract
Bacteria within the family Paracoccaceae show promising potential for applications in various fields, garnering significant research attention. Three Gram stain-negative bacteria, strains CPCC 101601T, CPCC 101403T, and CPCC 100767, were isolated from diverse environments: freshwater, rhizosphere soil of Broussonetia papyrifera, and the phycosphere, respectively. Analysis of their 16S rRNA gene sequences, compared with those in the GenBank database, indicated that they belong to the family Paracoccaceae, with nucleotide similarities of 92.5%-99.9% to all of the Paracoccaceae members with valid taxonomic names. Phylogenetic studies based on 16S rRNA gene and whole-genome sequences identified CPCC 101601T as a member of the genus Pseudogemmobacter, CPCC 101403T belonging to the genus Paracoccus, and CPCC 100767 as part of the genus Gemmobacter. Notably, genomic analysis using average nucleotide identity (ANI; <95%) and digital DNA-DNA hybridization (dDDH; <70%) with their closely related strains suggested that CPCC 101601T and CPCC 101403T represent new species within their respective genera. Conversely, CPCC 100767 exhibited high ANI (98.5%) and dDDH (87.4%) values with Gemmobacter fulvus con5T, indicating it belongs to this already recognized species. The in-depth genomic analysis revealed that strains CPCC 101601T, CPCC 101403T, and CPCC 100767 harbor key genes related to the pathways for denitrifying, MA utilization, and polyhydroxyalkanoate biosynthesis. Moreover, genotyping and phenotyping analysis confirmed that strain CPCC 100767 has the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid, whereas CPCC 101601T can only perform the former bioprocess.IMPORTANCEBased on polyphasic taxonomic study, two new species, Pseudogemmobacter lacusdianii and Paracoccus broussonetiae, affiliated with the family Paracoccaceae were identified. This expands our understanding of the family Paracoccaceae and provides new microbial materials for further studies. Modern genomic techniques such as average nucleotide identity and digital DNA-DNA hybridization were utilized to determine species affiliations. These methods offer more precise results than traditional classification mainly based on 16S rRNA gene analysis. Beyond classification of these strains, the research delved into their genomes and discovered key genes related to denitrification, MA utilization, and polyhydroxyalkanoate biosynthesis. The identification of these genes provides a molecular basis for understanding the environmental roles of these strains. Particularly, strain CPCC 100767 demonstrated the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid. These bioprocess capabilities are of significant practical value, such as in agricultural production for use as biofertilizers or biostimulants.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cong-Jian Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Wei-Hong Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Du L, Liu Q, Wang L, Lyu H, Tang J. Microplastics enhanced the allelopathy of pyrogallol on toxic Microcystis with additional risks: Microcystins release and greenhouse gases emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173864. [PMID: 38879032 DOI: 10.1016/j.scitotenv.2024.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria blooms (CBs) caused by eutrophication pose a global concern, especially Microcystis aeruginosa (M. aeruginosa), which could release harmful microcystins (MCs). The impact of microplastics (MPs) on allelopathy in freshwater environments is not well understood. This study examined the joint effect of adding polystyrene (PS-MPs) as representative MPs and two concentrations (2 and 8 mg/L) of pyrogallol (PYR) on the allelopathy of M. aeruginosa. The results showed that the addition of PS-MPs intensified the inhibitory effect of 8 mg/L PYR on the growth and photosynthesis of M. aeruginosa. After a 7-day incubation period, the cell density decreased to 69.7 %, and the chl-a content decreased to 48 % compared to the condition without PS-MPs (p < 0.05). Although the growth and photosynthesis of toxic Microcystis decreased with the addition of PS-MPs, the addition of PS-MPs significantly resulted in a 3.49-fold increase in intracellular MCs and a 1.10-fold increase in extracellular MCs (p < 0.05). Additionally, the emission rates of greenhouse gases (GHGs) (carbon dioxide, nitrous oxide and methane) increased by 2.66, 2.23 and 2.17-fold, respectively (p < 0.05). In addition, transcriptomic analysis showed that the addition of PS-MPs led to the dysregulation of gene expression related to DNA synthesis, membrane function, enzyme activity, stimulus detection, MCs release and GHGs emissions in M. aeruginosa. PYR and PS-MPs triggered ROS-induced membrane damage and disrupted photosynthesis in algae, leading to increased MCs and GHG emissions. PS-MPs accumulation exacerbated this issue by impeding light absorption and membrane function, further heightening the release of MCs and GHGs emissions. Therefore, PS-MPs exhibited a synergistic effect with PYR in inhibiting the growth and photosynthesis of M. aeruginosa, resulting in additional risks such as MCs release and GHGs emissions. These results provide valuable insights for the ecological risk assessment and control of algae bloom in freshwater ecosystems.
Collapse
Affiliation(s)
- Linqing Du
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Cheng Q, Li Z, Zhang J, Guo H, Ahmat M, Cheng J, Abbas Z, Hua Z, Wang J, Tong Y, Yang T, Si D, Zhang R. Soybean Oil Regulates the Fatty Acid Synthesis II System of Bacillus amyloliquefaciens LFB112 by Activating Acetyl-CoA Levels. Microorganisms 2023; 11:1164. [PMID: 37317138 DOI: 10.3390/microorganisms11051164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/16/2023] Open
Abstract
[Background] Bacillus LFB112 is a strain of Bacillus amyloliquefaciens screened in our laboratory. Previous studies found that it has a strong ability for fatty acid metabolism and can improve the lipid metabolism of broilers when used as feed additives. [Methods] This study aimed to confirm the fatty acid metabolism of Bacillus LFB112. Sterilized soybean oil (SSO) was added to the Beef Peptone Yeast (BPY) medium, and its effect on fatty acid content in the supernatant and bacteria, as well as expression levels of genes related to fatty acid metabolism, were studied. The control group was the original culture medium without oil. [Results] Acetic acid produced by the SSO group of Bacillus LFB112 decreased, but the content of unsaturated fatty acids increased. The 1.6% SSO group significantly increased the contents of pyruvate and acetyl-CoA in the pellets. Furthermore, the mRNA levels of enzymes involved in the type II fatty acid synthesis pathway of FabD, FabH, FabG, FabZ, FabI, and FabF were up-regulated. [Conclusions] Soybean oil increased the content of acetyl-CoA in Bacillus LFB112, activated its type II fatty acid synthesis pathway, and improved the fatty acid metabolism level of Bacillus LFB112. These intriguing results pave the way for further investigations into the intricate interplay between Bacillus LFB112 and fatty acid metabolism, with potential applications in animal nutrition and feed additive development.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zhongxuan Li
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Jing Zhang
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Henan Guo
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Marhaba Ahmat
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Junhao Cheng
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zaheer Abbas
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zhengchang Hua
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Junyong Wang
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yucui Tong
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Yang
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Strategies to Enhance the Biosynthesis of Monounsaturated Fatty Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Production of cis-Vaccenic Acid-oriented Unsaturated Fatty Acid in Escherichia coli. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0473-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Ukey R, Holmes WE, Bajpai R, Chistoserdov AY. Evaluation of thioesterases from Acinetobacter baylyi for production of free fatty acids. Can J Microbiol 2017; 63:321-329. [PMID: 28335611 DOI: 10.1139/cjm-2016-0458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acinetobacter baylyi is one of few Gram-negative bacteria capable of accumulating storage lipids in the form of triacylglycerides and wax esters, which makes it an attractive candidate for production of lipophilic products, including biofuel precursors. Thioesterases play a significant dual role in the triacylglyceride and wax ester biosynthesis by either providing or removing acyl-CoA from this pathway. Therefore, 4 different thioesterase genes were cloned from Acinetobacter baylyi ADP1 and expressed in Escherichia coli to investigate their contribution to free fatty acids (FFAs) accumulation. Overexpression of the genes tesA' (a leaderless form of the gene tesA) and tesC resulted in increased accumulation of FFAs when compared with the host E. coli strain. Overexpression of tesA' showed a 1.87-fold increase in production of long-chain fatty acids (C16 to C18) over the host strain. Unlike TesC and the other investigated thioesterases, the TesA' thioesterase also produced shorter chain FFAs (e.g., myristic acid) and unsaturated FFAs (e.g., cis-vaccenic acid (18:1Δ11)). A comparison of the remaining 3 A. baylyi ADP1 thioesterases (encoded by the tesB, tesC, and tesD genes) revealed that only the strain containing the tesC gene produced statistically higher levels of FFAs over the control, suggesting that it possesses the acyl-ACP thioesterase activity. Both E. coli strains containing the tesB and tesD genes produced levels of FFAs similar to those of the plasmid-free control E. coli strain, which indicates that TesB and TesD lack the acyl-ACP thioesterase activity.
Collapse
Affiliation(s)
- Rahul Ukey
- a Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - William E Holmes
- b Energy Institute, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Rakesh Bajpai
- c Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Andrei Y Chistoserdov
- a Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
8
|
Li SS, Hu X, Zhao H, Li YX, Zhang L, Gong LJ, Guo J, Zhao HB. Quantitative analysis of cellular proteome alterations of Pseudomonas putida to naphthalene-induced stress. Biotechnol Lett 2015; 37:1645-54. [DOI: 10.1007/s10529-015-1828-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
9
|
Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol. Enzyme Microb Technol 2014; 67:8-16. [DOI: 10.1016/j.enzmictec.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 01/29/2023]
|
10
|
Tee TW, Chowdhury A, Maranas CD, Shanks JV. Systems metabolic engineering design: fatty acid production as an emerging case study. Biotechnol Bioeng 2014; 111:849-57. [PMID: 24481660 PMCID: PMC4241050 DOI: 10.1002/bit.25205] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities.
Collapse
Affiliation(s)
- Ting Wei Tee
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
| | | | | | | |
Collapse
|
11
|
Liu Y, Chen T, Yang M, Wang C, Huo W, Yan D, Chen J, Zhou J, Xing J. Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth. J Chromatogr A 2013; 1323:66-72. [PMID: 24290170 DOI: 10.1016/j.chroma.2013.10.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 01/13/2023]
Abstract
Microbial production of fatty acids and fatty alcohols has attracted increasing concerns because of energy crisis and environmental impact of fossil fuels. Therefore, simple and efficient methods for the extraction and quantification of these compounds become necessary. In this study, a high-performance liquid chromatography-refractive index detection (HPLC-RID) method was developed for the simultaneous quantification of fatty acids and fatty alcohols in these samples. The optimum chromatographic conditions are C18 column eluted with methanol:water:acetic acid (90:9.9:0.1, v/v/v); column temperature, 26°C; flow rate, 1.0mL/min. Calibration curves of all selected analytes showed good linearity (r(2)≥0.9989). The intra-day and inter-day relative standard deviations (RSDs) of the 10 compounds were less than 4.46% and 5.38%, respectively, which indicated that the method had good repeatability and precision. Besides, a method for simultaneous extraction of fatty acids and fatty alcohols from fermentation broth was optimized by orthogonal design. The optimal extraction conditions were as follows: solvent, ethyl acetate; solvent to sample ratio, 0.5:1; rotation speed, 2min at 260rpm; extraction temperature, 10°C. This study provides simple and fast methods to simultaneously extract and quantify fatty acids and fatty alcohols for the first time. It will be useful for the study of microbial production of these products.
Collapse
Affiliation(s)
- Yilan Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- Department of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Maohua Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Caixia Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyan Huo
- Huabei oilfield No. 1 middle school, Renqiu 062550, Cangzhou City, Hebei Province, China
| | - Daojiang Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjin Chen
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiemin Zhou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
12
|
Lee S, Park S, Lee J. Improvement of free fatty acid production in Escherichia coli using codon-optimized Streptococcus pyogenes acyl-ACP thioesterase. Bioprocess Biosyst Eng 2013; 36:1519-25. [PMID: 23297069 DOI: 10.1007/s00449-012-0882-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/21/2012] [Indexed: 12/01/2022]
Abstract
Fatty acyl-acyl carrier protein (ACP) thioesterase (acyl-ACP TE) from Streptococcus pyogenes (strain MGAS10270) was codon-optimized and expressed in Escherichia coli K-12 W3110 and Escherichia coli K-12 MG1655. By employing codon-optimized S. pyogenes acyl-ACP TE to improve the total free fatty acids (FFAs) and to tailor the composition of FFAs, high-specificity production of saturated fatty acids (C12, C14) and unsaturated fatty acids (C18:1 C18:2) was achieved in recombinants. E. coli SGJS41 and SGJS46 (codon-optimized acyl-ACP TE of S. pyogenes) demonstrated the highest intracellular total FFA content (339 mg/l vs 342 mg/l); in particular, the content of C12 and C14 FFAs was about 3-5 fold, and the content of C18:1 and C18:2 FFAs was about 8-42 fold higher than that in the control E. coli and E. coli JES1017 (original acyl-ACP TE of S. pyogenes).
Collapse
Affiliation(s)
- Sunhee Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | | | | |
Collapse
|