1
|
Kasali FM, Kadima JN, Peter EL, Mtewa AG, Ajayi CO, Tusiimire J, Tolo CU, Ogwang PE, Weisheit A, Agaba AG. Antidiabetic Medicinal Plants Used in Democratic Republic of Congo: A Critical Review of Ethnopharmacology and Bioactivity Data. Front Pharmacol 2021; 12:757090. [PMID: 34776975 PMCID: PMC8579071 DOI: 10.3389/fphar.2021.757090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Several studies have been conducted and published on medicinal plants used to manage Diabetes Mellitus worldwide. It is of great interest to review available studies from a country or a region to resort to similarities/discrepancies and data quality. Here, we examined data related to ethnopharmacology and bioactivity of antidiabetic plants used in the Democratic Republic of Congo. Data were extracted from Google Scholar, Medline/PubMed, Scopus, ScienceDirect, the Wiley Online Library, Web of Science, and other documents focusing on ethnopharmacology, pharmacology, and phytochemistry antidiabetic plants used in the Democratic Republic of Congo from 2005 to September 2021. The Kew Botanic Royal Garden and Plants of the World Online web databases were consulted to verify the taxonomic information. CAMARADES checklist was used to assess the quality of animal studies and Jadad scores for clinical trials. In total, 213 plant species belonging to 72 botanical families were reported. Only one plant, Droogmansia munamensis, is typically native to the DRC flora; 117 species are growing in the DRC and neighboring countries; 31 species are either introduced from other regions, and 64 are not specified. Alongside the treatment of Diabetes, about 78.13% of plants have multiple therapeutic uses, depending on the study sites. Experimental studies explored the antidiabetic activity of 133 plants, mainly in mice, rats, guinea pigs, and rabbits. Several chemical classes of antidiabetic compounds isolated from 67 plant species have been documented. Rare phase II clinical trials have been conducted. Critical issues included poor quality methodological protocols, author name incorrectly written (16.16%) or absent (14.25%) or confused with a synonym (4.69%), family name revised (17.26%) or missing (1.10%), voucher number not available 336(92.05%), ecological information not reported (49.59%). Most plant species have been identified and authenticated (89.32%). Hundreds of plants are used to treat Diabetes by traditional healers in DRC. However, most plants are not exclusively native to the local flora and have multiple therapeutic uses. The analysis showed the scarcity or absence of high-quality, in-depth pharmacological studies. There is a need to conduct further studies of locally specific species to fill the gap before their introduction into the national pharmacopeia.
Collapse
Affiliation(s)
- Félicien Mushagalusa Kasali
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu, Democratic Republic of Congo
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Justin Ntokamunda Kadima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu, Democratic Republic of Congo
- Department of Pharmacology, School of Medicine and Pharmacy, University of Rwanda, Huye, Rwanda
| | - Emanuel L. Peter
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Innovation, Technology Transfer and Commercialization, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Andrew G. Mtewa
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Chemistry Section, Department of Applied Studies, Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Clement Olusoji Ajayi
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jonans Tusiimire
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Casim Umba Tolo
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Anke Weisheit
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Amon Ganafa Agaba
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
3
|
Braga AA, e Lacerda RR, de Vasconcelos Medeiros GKV, Gonçalves GF, de Luna Freire Pessoa H, Cardoso JD, de Almeida Gadelha CA, da Silva BA, Santi-Gadelha T. Antibacterial and Hemolytic Activity of a new Lectin Purified from the Seeds of Sterculia Foetida L. Appl Biochem Biotechnol 2014; 175:1689-99. [DOI: 10.1007/s12010-014-1390-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 11/12/2014] [Indexed: 11/29/2022]
|
4
|
Gregorio-Jauregui KM, Carrizalez-Alvarez SA, Rivera-Salinas JE, Saade H, Martinez JL, López RG, Segura EP, Ilyina A. Extraction and Immobilization of SA-α-2,6-Gal Receptors on Magnetic Nanoparticles to Study Receptor Stability and Interaction with Sambucus nigra Lectin. Appl Biochem Biotechnol 2014; 172:3721-35. [DOI: 10.1007/s12010-014-0801-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|