1
|
Türkcan C. Development of A New Method For The Synthesis of Macroporous Polymeric Surfaces For Lateral Flow Assay. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Öndeş B, Akpınar F, Uygun M, Muti M, Aktaş Uygun D. High stability potentiometric urea biosensor based on enzyme attached nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Yavaşer R, Karagözler AA. Reactive Green 5-Decorated Polyacrylamide/Chitosan Cryogel: An Affinity Matrix for Catalase. Appl Biochem Biotechnol 2020; 192:1191-1206. [PMID: 32705520 DOI: 10.1007/s12010-020-03393-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Acrylamide/chitosan-based cryogel was fabricated, and a triazine dye, Reactive Green 5, was attached to the cryogel by nucleophilic substitution to build a dye affinity support for adsorption of catalase enzyme. Characterization of cryogel was performed using FTIR, SEM, EDX, BET, and swelling test. Synthesized cryogel beared pores with ~ 200 μm in size and the surface area of 11.8 m2/g. Maximum catalase adsorption was (17.6 ± 0.29 mg/g) measured at pH 4.0 and 25 °C. The adsorption sites on the cryogel were saturated at 0.75 mg/mL enzyme concentration. Increased ionic strength caused a decrease in adsorption capacity. Desorption of catalase from cryogel was enabled using 0.5 M NaSCN solution. Consecutive adsorption experiments were carried out fifteen times to evaluate the reusability of the cryogel. Thermal, storage, and operational stabilities of immobilized catalase were higher than the free one. The data produced implicate that catalase-adsorbed dye-affinity cryogel may be used for H2O2 detection or removal when necessary. Graphical Abstract.
Collapse
Affiliation(s)
- Rukiye Yavaşer
- Chemistry Department, Faculty of Arts and Sciences, Aydın Adnan Menderes University, 09010, Aydın, Turkey.
| | - Arife Alev Karagözler
- Chemistry Department, Faculty of Arts and Sciences, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| |
Collapse
|
4
|
Bresolin ITL, Bresolin IRAP, Bueno SMA. Evaluation of Iminodiacetic Acid (IDA) as an Ionogenic Group for Adsorption of IgG 1 Monoclonal Antibodies by Membrane Chromatography. Appl Biochem Biotechnol 2019; 191:810-823. [PMID: 31863350 DOI: 10.1007/s12010-019-03217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022]
Abstract
Iminodiacetic acid (IDA) is one of the chelating ligands most frequently employed in immobilized metal-ion affinity chromatography (IMAC) due to its ability to act as electron-pair donor, forming stable complexes with intermediate and borderline Lewis metal ions (electron acceptor). Thus, IDA can also be employed in ion exchange chromatography to purify positively charged proteins at neutral pH values. This study aimed to evaluate IDA as an ionogenic group (ion exchanger) immobilized on poly (ethylene vinyl alcohol) (PEVA) hollow fiber membranes for immunoglobulin G1 (IgG1) monoclonal antibody (MAb) purification. IDA-PEVA membranes showed considerable promise for MAb purification, since IgG1 was recovered in eluted fractions with traces of contaminants as confirmed by Western blotting and ELISA analysis. Quantification of IgG1 showed that a purity of 94.2% was reached in the elution step. Breakthrough curve and batch adsorption experiments showed that the MAb dynamic binding capacity (DBC) of 3.10 mg g-1 and the maximum adsorption capacity of 70 mg g-1 were of the same order of magnitude as those found in the literature. The results obtained showed that the IDA-PEVA hollow fiber membrane could be a powerful adsorbent for integrating large-scale processes for purification of MAb from cell culture supernatant.
Collapse
Affiliation(s)
| | | | - Sônia Maria Alves Bueno
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| |
Collapse
|
5
|
Alptekin Ö. Üreazın modifiye edilmiş florisile kovalent immobilizasyonu ve serbest ve immobilize üreazın karakterizasyonu. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.453980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Wan B, Li J, Ma F, Yu N, Zhang W, Jiang L, Wei H. Preparation and Properties of Cryogel Based on Poly(2-hydroxyethyl methacrylate- co-glycidyl methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3284-3294. [PMID: 30739457 DOI: 10.1021/acs.langmuir.8b04021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The immobilized metal affinity cryogels based on poly(2-hydroxyethyl methacrylate- co-glycidyl methacrylate) (p(HEMA-GMA)) containing hydroxy and epoxy groups were prepared by free-radical copolymerization under cryogenic condition and then functionalized with iminodiacetic acid and chelated Cu2+, Ca2+, and Fe3+ ions to the p(HEMA-GMA) cryogel. The structures of p(HEMA-GMA) and immobilized metal-affinity cryogels were analyzed by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy. SEM results showed that the prepared cryogels had interconnected pores with the size of 30-100 μm. The performance of water swelling into the cryogels was fitted in Fickian diffusion. The adsorption property of cryogels was influenced by the immobilized ionic type, temperature, and adsorbate. The adsorption capacity of immobilized Cu2+ cryogel (p(HEMA)-Cu2+ (0.5 M) cryogel) was the highest in comparison with that of Ca2+ and Fe3+ affinity cryogels under the same condition. The maximum adsorption capacity of p(HEMA)-Cu2+ (0.5 M) cryogel for porcine pancreatic lipase was 150.14 mg/g at a higher temperature of 35 °C, whereas for bovine serum albumin, the maximum adsorption capacity was 154.11 mg/g at a lower temperature of 25 °C. The research of thermodynamics and kinetics indicated that the mechanism of the protein adsorption process corresponded to the Langmuir model and pseudo-second-order model.
Collapse
Affiliation(s)
- Binbin Wan
- School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Junying Li
- School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
- Shandong Provincial Key Laboratory for Special Silicone-Containing Materials , Jinan 250014 , P. R. China
| | - Feng Ma
- School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Ning Yu
- School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Wenjing Zhang
- School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Lujie Jiang
- School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Hengshan Wei
- School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| |
Collapse
|
7
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
8
|
Santos T, Brito A, Boto R, Sousa P, Almeida P, Cruz C, Tomaz C. Influenza DNA vaccine purification using pHEMA cryogel support. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
10
|
Baysal Z, Aksoy E, Dolak İ, Ersöz A, Say R. Adsorption behaviours of lysozyme onto poly-hydroxyethyl methacrylate cryogels containing methacryloyl antipyrine-Ce(III). INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1320655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zübeyde Baysal
- Department of Chemistry, Faculty of Science, Dicle University, Diyarbakir, Turkey
| | - Eyyüp Aksoy
- Department of Chemistry, Faculty of Science, Dicle University, Diyarbakir, Turkey
| | - İbrahim Dolak
- Technical Science, Vocational High School, Dicle University, Diyarbakir, Turkey
| | - Arzu Ersöz
- Department of Chemistry, Faculty of Science, Anadolu University, Eskişehir, Turkey
| | - Rıdvan Say
- Department of Chemistry, Faculty of Science, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
11
|
Wu L, Wu S, Xu Z, Qiu Y, Li S, Xu H. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosens Bioelectron 2016; 80:59-66. [DOI: 10.1016/j.bios.2016.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/16/2016] [Indexed: 11/25/2022]
|
12
|
Soomro R, Perçin I, Memon N, Iqbal Bhanger M, Denizli A. Gelatin-loaded p(HEMA-GMA) cryogel for high-capacity immobilization of horseradish peroxidase. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1708-13. [PMID: 26508304 DOI: 10.3109/21691401.2015.1089252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) [p(HEMA-GMA)] cryogel discs were prepared under sub-zero temperatures. Gelatin was attached covalently on the p(HEMA-GMA) cryogel discs and reversible immobilization of horseradish peroxidase (HRP) was performed. The p(HEMA-GMA) cryogel discs were characterized by swelling tests, scanning electron microscopy, and surface area measurements. HRP immobilization capacity of p(HEMA-GMA)/gelatin cryogel discs was 24.8 mg/g. Removal of phenol from aqueous solutions was performed using HRP immobilized p(HEMA-GMA)/gelatin cryogel. It was observed that within 2 h of contact time, the percentage of phenol removal reaches up to 91% in the presence of H2O2.
Collapse
Affiliation(s)
- Rabel Soomro
- a Department of Chemistry , Hacettepe University, Biochemistry Division , Beytepe , Ankara , Turkey .,b National Centre of Excellence in Analytical Chemistry, University of Sindh , Jamshoro , Sindh , Pakistan
| | - Işık Perçin
- c Department of Biology , Hacettepe University, Molecular Biology Division, Beytepe , Ankara , Turkey , and
| | - Najma Memon
- b National Centre of Excellence in Analytical Chemistry, University of Sindh , Jamshoro , Sindh , Pakistan
| | | | - Adil Denizli
- a Department of Chemistry , Hacettepe University, Biochemistry Division , Beytepe , Ankara , Turkey
| |
Collapse
|
13
|
Uygun M, Akduman B, Ergönül B, Aktaş Uygun D, Akgöl S, Denizli A. Immobilization of amyloglucosidase onto macroporous cryogels for continuous glucose production from starch. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1112-25. [DOI: 10.1080/09205063.2015.1078928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Uygun DA, Akduman B, Uygun M, Akgöl S, Denizli A. Immobilization of alcohol dehydrogenase onto metal-chelated cryogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:446-57. [PMID: 25715869 DOI: 10.1080/09205063.2015.1023241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this presented work, poly(HEMA-GMA) cryogel was synthesized and used for the immobilization of alcohol dehydrogenase. For this, synthesized cryogels were functionalized with iminodiacetic acid and chelated with Zn(2+). This metal-chelated cryogels were used for the alcohol dehydrogenase immobilization and their kinetic parameters were compared with free enzyme. Optimum pH was found to be 7.0 for both immobilized and free enzyme preparations, while temperature optima for free and immobilized alcohol dehydrogenase was 25 °C. Kinetic constants such as K(m), V(max), and k(cat) for free and immobilized form of alcohol dehydrogenase were also investigated. k(cat) value of free enzyme was found to be 3743.9 min(-1), while k(cat) for immobilized enzyme was 3165.7 min(-1). Thermal stability of the free and immobilized alcohol dehydrogenase was studied and stability of the immobilized enzyme was found to be higher than free form. Also, operational stability and reusability profile of the immobilized alcohol dehydrogenase were investigated. Finally, storage stability of the free and immobilized alcohol dehydrogenase was studied, and at the end of the 60 days storage, it was demonstrated that, immobilized alcohol dehydrogenase was exhibited high stability than that of free enzyme.
Collapse
|
15
|
Şenay RH, Gökalp SM, Türker E, Feyzioğlu E, Aslan A, Akgöl S. A new morphological approach for removing acid dye from leather waste water: preparation and characterization of metal-chelated spherical particulated membranes (SPMs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 151:295-302. [PMID: 25585142 DOI: 10.1016/j.jenvman.2014.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 12/24/2014] [Accepted: 12/27/2014] [Indexed: 06/04/2023]
Abstract
In this study, p(HEMA-GMA) poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) spherical particulated membranes (SPMs) were produced by UV-photopolymerization and the synthesized SPMs were coupled with iminodiacetic acid (IDA). Finally the novel SPMs were chelated with Cr(III) ions as ligand and used for removing acid black 210 dye. Characterizations of the metal-chelated SPMs were made by SEM, FTIR and swelling test. The water absorption capacities and acid dye adsorption properties of the SPMs were investigated and the results were 245.0, 50.0, 55.0 and 51.9% for p(HEMA), p(HEMA-GMA), p(HEMA-GMA)-IDA and p(HEMA-GMA)-IDA-Cr(III) SPMs respectively. Adsorption properties of the p(HEMA-GMA)-IDA-Cr(III) SPMs were investigated under different conditions such as different initial dye concentrations and pH. The optimum pH was observed at 4.3 and the maximum adsorption capacity was determined as 885.14 mg/g at about 8000 ppm initial dye concentration. The concentrations of the dyes were determined using a UV/Vis Spectrophotometer at a wavelength of 435 nm. Reusability of p(HEMA-GMA)-IDA-Cr(III) SPMs was also shown for five adsorption-desorption cycles without considerable decrease in its adsorption capacity. Finally, the results showed that the metal-chelated p(HEMA-GMA)-IDA SPMs were effective sorbent systems removing acid dye from leather waste water.
Collapse
Affiliation(s)
- Raziye Hilal Şenay
- Ege University Faculty of Science, Biochemisty Department, İzmir, Turkey.
| | - Safiye Meriç Gökalp
- Ege University Faculty of Engineering, Leather Engineering Department, İzmir, Turkey.
| | - Evren Türker
- Ege University Faculty of Engineering, Leather Engineering Department, İzmir, Turkey.
| | - Esra Feyzioğlu
- Ege University Faculty of Science, Biochemisty Department, İzmir, Turkey.
| | - Ahmet Aslan
- Ege University Faculty of Engineering, Leather Engineering Department, İzmir, Turkey.
| | - Sinan Akgöl
- Ege University Faculty of Science, Biochemisty Department, İzmir, Turkey.
| |
Collapse
|
16
|
Perçin I, Khalaf R, Brand B, Morbidelli M, Gezici O. Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel. J Chromatogr A 2015; 1386:13-21. [DOI: 10.1016/j.chroma.2015.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 10/24/2022]
|
17
|
Uygun M, Akduman B, Uygun DA, Akgöl S, Denizli A. Dye functionalized cryogel columns for reversible lysozyme adsorption. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:277-89. [DOI: 10.1080/09205063.2014.997560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Uygun M. Dye-attached cryogels for reversible alcohol dehydrogenase immobilization. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 959:42-8. [DOI: 10.1016/j.jchromb.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/08/2014] [Accepted: 04/02/2014] [Indexed: 12/11/2022]
|
19
|
Effects of additives on lipase immobilization in microemulsion-based organogels. Appl Biochem Biotechnol 2014; 172:3128-40. [PMID: 24497044 DOI: 10.1007/s12010-014-0746-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
An inexpensive, facile, and environmentally benign method was developed to improve the activity and stability of Candida rugosa lipase (triacylglycerol acylhydrolase) immobilized on microemulsion-based organogels (CRL MBGs) via the addition of additives during immobilization. The additives used were polyethylene glycol (PEG) or polysaccharides. This study is the first report on the effect of additives in CRL MBGs. Among the tested additives, PEG produced the most improvement in the immobilized CRL, enhancing its stability in organic solvents (specifically polar solvents). The results of circular dichroism and fluorescence spectra experiments indicated that exposure of the acidic CRL to electronegative additives in the buffer, such as polyethylenimine and the electropositive surfactant cetyltrimethylammonium bromide, may change the lipase secondary structure, ultimately causing enzyme inactivation. However, sodium bis(2-ethylhexyl)sulfosuccinate and PEG 2000 had minimal effects on the secondary structure of CRL. The CRL MBGs containing PEG 2000 demonstrated remarkable retention of their catalytic activity during the recycling test. No significant changes in enzymatic activity were observed, even after nine runs, and 90% of the original yield was maintained after 15 cycles.
Collapse
|