1
|
Microbial Astaxanthin Production from Agro-Industrial Wastes—Raw Materials, Processes, and Quality. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The antioxidant and food pigment astaxanthin (AX) can be produced by several microorganisms, in auto- or heterotrophic conditions. Regardless of the organism, AX concentrations in culture media are low, typically about 10–40 mg/L. Therefore, large amounts of nutrients and water are necessary to prepare culture media. Using low-cost substrates such as agro-industrial solid and liquid wastes is desirable for cost reduction. This opens up the opportunity of coupling AX production to other existing processes, taking advantage of available residues or co-products in a biorefinery approach. Indeed, the scientific literature shows that many attempts are being made to produce AX from residues. However, this brings challenges regarding raw material variability, process conditions, product titers, and downstream processing. This text overviews nutritional requirements and suitable culture media for producing AX-rich biomass: production and productivity ranges, residue pretreatment, and how the selected microorganism and culture media combinations affect further biomass production and quality. State-of-the-art technology indicates that, while H. pluvialis will remain an important source of AX, X. dendrorhous may be used in novel processes using residues.
Collapse
|
2
|
Qiao J, Cui H, Wang M, Fu X, Wang X, Li X, Huang H. Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. BIORESOURCE TECHNOLOGY 2022; 360:127516. [PMID: 35764282 DOI: 10.1016/j.biortech.2022.127516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic biomass is an abundant and sustainable raw material, but its conversion into ethanol fuel has not yet achieved large-scale industrialization and economic benefits. Integrated biorefineries have been widely identified as the key to achieving this goal. Here, four promising routes were summarized to assemble the new industrial plants for cellulose-based fuels and chemicals, including 1) integration of cellulase production systems into current cellulosic ethanol processes; 2) combination of processes and facilities between cellulosic ethanol and first-generation ethanol; 3) application of enzyme-free saccharification processes and computational approaches to increase the bioethanol yield and optimize the integration process; 4) production of multiple products to maximize the value derived from the lignocellulosic biomass. Finally, the remaining challenges and perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xianshen Fu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China; School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
3
|
Measuring Biomass-Derived Products in Biological Conversion and Metabolic Process. Methods Mol Biol 2020. [PMID: 32720150 DOI: 10.1007/978-1-0716-0195-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Biomass can be converted to various types of products in biological and metabolic processes. For an in-depth understanding of biomass conversion, quantitative and qualitative information of products in these conversion processes are essential. Here we introduce analytical techniques including high-performance liquid chromatography (HPLC), gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) for biomass-based products characterization in biological and metabolic processes.
Collapse
|
4
|
Enhanced Enzymatic Saccharification of Wheat Flour Arabinoxylan and Barley Straw Using Recombinant Hemicellulases. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0231-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Zhuang Y, Jiang GL, Zhu MJ. Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Affiliation(s)
- Csaba Fehér
- Department of Applied Biotechnology and Food Science, Biorefinery Research Group, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
7
|
Yoo CG, Nghiem NP, Kim TH. Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (SAA) pretreatment and fermentation to succinic acid using Escherichia coli AFP184. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0139-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars. Appl Biochem Biotechnol 2016; 179:237-50. [DOI: 10.1007/s12010-016-1990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
9
|
Nghiem NP, Senske GE, Kim TH. Pretreatment of Corn Stover by Low Moisture Anhydrous Ammonia (LMAA) in a Pilot-Scale Reactor and Bioconversion to Fuel Ethanol and Industrial Chemicals. Appl Biochem Biotechnol 2016; 179:111-25. [PMID: 26769706 DOI: 10.1007/s12010-016-1982-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Corn stover (CS) adjusted to 50, 66, and 70 % moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70 % moisture CS was treated at 90 and 100 °C whereas the others were treated at 90 °C only. The 70 % moisture pretreated CS then was subjected to a storage study under non-sterile conditions for 3 months. It was found that storage time did not have significant effects on the compositions of the pretreated materials and their hydrolysis by commercial enzymes. The 70 % moisture CS treated at 90 °C was used for preparation of a mix sugar hydrolysate (MSH) using combination of cellulase and xylanase. The MSH was used to prepare a corn mash at 9.5 wt% solid then subjected to ethanol fermentation by Escherichia coli KO11. The 66 % moisture CS treated at 90 °C was hydrolyzed with xylanase to make a xylose-rich hydrolysate (XRH), which was subsequently used for butyric acid fermentation by Clostridium tyrobutyricum. The resultant cellulose-enriched residue was hydrolyzed with cellulase to make a glucose-rich hydrolysate (GRH), which was subsequently used for succinic acid fermentation by E. coli AFP184.
Collapse
Affiliation(s)
- Nhuan P Nghiem
- Sustainable Biofuels and Co-products Research Unit, Eastern Regional Research Center, Agricultural Research Service, USDA, Wyndmoor, PA, 19038, USA.
| | - Gerard E Senske
- Sustainable Biofuels and Co-products Research Unit, Eastern Regional Research Center, Agricultural Research Service, USDA, Wyndmoor, PA, 19038, USA
| | - Tae Hyun Kim
- Department of Environmental Engineering, Kongju National University, Cheonandae-Ro, 1223-24, Cheonan, Chungnam, 31080, Korea
| |
Collapse
|
10
|
P. Nghiem N, Montanti J, B. Johnston D. Sorghum as a renewable feedstock for production of fuels and industrial chemicals. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.1.75] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
P. Nghiem N, W. Ellis, Jr. C, Montanti J. The effects of ethanol on hydrolysis of cellulose and pretreated barley straw by some commercial cellulolytic enzyme products. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Sànchez Nogué V, Karhumaa K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol Lett 2014; 37:761-72. [DOI: 10.1007/s10529-014-1756-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|
13
|
Zhang X, Nghiem NP, Hicks KB, Johnston DB, Hector RE. Ethanol Production by High-Solids Simultaneous Saccharification and Fermentation of Cellulose-Enriched Barley Straw and Hull Residues Obtained by Alkaline Hydrogen Peroxide Pretreatment. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2013.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xiu Zhang
- Department of Bioscience and Bioengineering, Beifang University of Nationalities, Yinchuan, Ningxia, People's Republic of China
| | - Nhuan P. Nghiem
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
| | - Kevin B. Hicks
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
| | - David B. Johnston
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
| | - Ronald E. Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Peoria, IL
| |
Collapse
|
14
|
Hara KY, Morita T, Endo Y, Mochizuki M, Araki M, Kondo A. Evaluation and screening of efficient promoters to improve astaxanthin production in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2014; 98:6787-93. [PMID: 24737060 DOI: 10.1007/s00253-014-5727-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/11/2014] [Accepted: 03/25/2014] [Indexed: 12/20/2022]
Abstract
Astaxanthin is a valuable carotenoid that is widely used in the aquaculture, food, pharmaceutical, and cosmetic industries. Xanthophyllomyces dendrorhous is a carotenoid-synthesizing yeast strain that produces astaxanthin as its main pigment. Although metabolic engineering using gene manipulation is a valuable way to improve astaxanthin production, a gene expression system for X. dendrorhous has been poorly developed. In this study, three known promoters of X. dendrorhous, glycerol-3-phosphate dehydrogenase (gpd) promoter (Pgpd), glucose dehydrogenase (gdh) promoter (Pgdh), and actin (act) promoter (Pact), were evaluated for use in the overexpression of target proteins using green fluorescence protein (GFP) as an expression level indicator protein. The actin promoter, Pact, showed the highest expression level of GFP when compared with Pgpd and Pgdh. Additionally, to obtain new promoters for higher expression of target protein in X. dendrorhous, intracellular GFP intensity was evaluated for 13 candidate promoters. An alcohol dehydrogenase promoter, Padh4, showed more efficient expression of GFP rather than Pact. Overexpression of crtE gene encoding rate-limiting enzyme of carotenoid synthesis under the adh4 promoter yielded an increase in intracellular astaxanthin content of about 1.7-fold compared with the control strain. The promoters identified in this study must be useful for improving carotenoids production in X. dendrorhous.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Zhang X, P. Nghiem N. Pretreatment and Fractionation of Wheat Straw for Production of Fuel Ethanol and Value-added Co-products in a Biorefinery. AIMS BIOENGINEERING 2014. [DOI: 10.3934/bioeng.2014.1.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|