Yi Z, Ma X, Song J, Yang X, Tang Q. Investigations in enhancement biodesulfurization of model compounds by ultrasound pre-oxidation.
ULTRASONICS SONOCHEMISTRY 2019;
54:110-120. [PMID:
30827908 DOI:
10.1016/j.ultsonch.2019.02.009]
[Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, complicated model sulfur compounds in crude oil were biodesulfurized in a batch process by microbial consortium enriched from oil contaminated soil. Dibenzothiophene (DBT) was selected as model sulfur compounds. Ultrasonic radiation was used to pre-oxidize the model sulfur compounds before the biodesulfurization (BDS) process. The enhancement mechanism of ultrasound pre-oxidation (UPO) on the biodesulfurization of DBT was investigated. The effects of initial conditions on the biodesulfurization of DBT in UPO/BDS system such as solution initial pH, DBT initial concentration, sulfur source, biocatalyst initial concentration, and incubation temperature were discussed. The results show that the application of UPO before BDS procedure significantly improved the efficiency of the biodesulfurization and allowed sulfur removal in shorter time through oxidizing DBT to DBT sulfone, resulting in shortening the "4S" pathway for biodesulfurization from 4 steps to 2 steps, enhancement in reaction velocity and enzyme-substrate affinity as well as reduction in substrate inhibition. The concentration of 2-HBP increased fast with the use of ultrasound pre-oxidation, which was dependent on solution initial pH, DBT initial concentration, sulfur source, biocatalyst initial concentration, and incubation temperature.
Collapse