1
|
Shahabadi N, Ghaffari L, Mardani Z, Hadidi S. Analysis of the binding mechanism for a water-soluble Pd(II) complex containing β-amino alcohols with HSA applying experimental and computational methods. J Biomol Struct Dyn 2024; 42:3790-3801. [PMID: 37243704 DOI: 10.1080/07391102.2023.2216281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
In the study ahead, the binding interactions of the [Pd (HEAC) Cl2] complex with human serum albumin (HSA) protein have been assayed in vitro (pH= 7.40) utilizing computational and experimental procedures. The mentioned complex was synthesized as a water-soluble complex from {2-((2-((2-hydroxyethyl)amino)ethyl)amino) cyclohexanol} ligand = HEAC. The results of electronic absorption and circular dichroism investigations illustrated that the hydrophobicity of the Tryptophan microenvironment in HSA undergoes the changes by binding to the Pd(II) complex without substantial perturbations on the protein secondary structure. The fluorescence emission spectroscopy analysis revealed that with rising temperature, the quenching constant (Ksv) in the Stern-Volmer's relation decreases; so, it can be said that the interaction process is along with a static quenching mechanism. The values of 2.88 × 105 M-1, and 1.26 represent the binding constant (Kb) and the number of the binding sites (n), respectively. The Job graph showed the maximum point at χ = 0.5, which means organizing a new set with 1:1 stoichiometry. Thermodynamic profile (ΔH < 0, ΔS < 0, and ΔG < 0) has affirmed that van der Waals forces and hydrogen bonds have a basic function in the Pd(II) complex-albumin bindings. The ligand-competitive displacement studies utilizing warfarin and ibuprofen have represented that Pd(II) complex interacts with albumin by site II (subdomain IIIA). The computational molecular docking theory approved the results of the site-competitive tests; also, it indicated the existence of hydrogen bonds and van der Waals forces in Pd(II) complex-albumin interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Lida Ghaffari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Zahra Mardani
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Jaiswal VD, Pangam DS, Dongre PM. Biophysical study of cisplatin loaded albumin-gold nanoparticle and its interaction with glycans of gp60 receptor. Int J Biol Macromol 2023; 231:123368. [PMID: 36682660 DOI: 10.1016/j.ijbiomac.2023.123368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The biophysical study provides a quantitative understanding of biomolecular interaction. The interaction of protein-nanoparticle has been critically examined using various biophysical and biochemical tools. The present investigation focussed on the biophysical characterization of anticancer drug cisplatin (CPT) with Bovine Serum Albumin (BSA) - Gold nanoparticles (GNP) conjugate; and BSA-CPT-GNP interaction with glycan sugars of glycoprotein receptor. Spectroscopic study (UV visible and fluorescence) showed strong binding of CPT loaded BSA with GNP. The binding between BSA-CPT-GNP and glycan sugars of gp60 receptor was estimated. Circular Dichroism (CD) spectroscopy study revealed weak alteration in the secondary structure of BSA upon CPT and GNP binding. Dynamic Light Scattering (DLS) data indicated the changes in the size of conjugates; zeta potential data showed the stability of conjugates. Biocompatible studies showed no toxicity to RBCs and chorioallantoic membrane (CAM). The mechanisms of interaction have been explored at the molecular and cellular levels. This investigation can be effectively extrapolated for in-vivo and in-vitro targeted drug delivery studies for cancer therapy.
Collapse
Affiliation(s)
- Vinod D Jaiswal
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Dhanashri S Pangam
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - P M Dongre
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India.
| |
Collapse
|
3
|
Tavakoli Hafshejani K, Sohrabi N, Eslami Moghadam M, Oftadeh M. Investigation of the physico-chemical interaction of ct-DNA with Anticancer Glycine Derivative of Pt-complex by applying docking and MD simulation methods and multi-spectroscopic techniques. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Macii F, Biver T. Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: tricky aspects and tips. J Inorg Biochem 2021; 216:111305. [PMID: 33261935 DOI: 10.1016/j.jinorgbio.2020.111305] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Protein binding heavily modulates drug activity. Therefore, the binding features need to be elucidated when chemistry researchers study new molecules (metal complexes) to be used as drugs. This paper concerns the experimental and data treatment aspects of the mechanistic analysis of the binding to a fluorescent protein (the golden standard serum albumin) by using direct fluorescence titrations. Fluorescence data are not rarely only qualitatively used, neglecting further treatments which could offer a precious detailed picture of the behavior of the drug. We aim to spread a mechanistic approach, discussing the critical aspects for correctly designing the experiments and treating the data. The researcher may confirm adduct formation and evaluate binding constants (Stern-Volmer KSV or other types of K). Also, we discuss here, with the help of literature examples, the correct use of temperature dependence of K to extract thermodynamic parameters, comment on enthalpy-entropy compensation, together with the use of synchronous spectra and exchange experiments to gain information on the binding type and site. We think that this tutorial/critical synopsis can be of help for the increasing community dealing with these experiments, which are valuable but often much more tricky than it might appear at first sight.
Collapse
Affiliation(s)
- Francesca Macii
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; Department of Pharmacy, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Shiekhzadeh A, Sohrabi N, Moghadam ME, Oftadeh M. Kinetic and Thermodynamic Investigation of Human Serum Albumin Interaction with Anticancer Glycine Derivative of Platinum Complex by Using Spectroscopic Methods and Molecular Docking. Appl Biochem Biotechnol 2019; 190:506-528. [PMID: 31388926 DOI: 10.1007/s12010-019-03078-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023]
Abstract
In this paper, a new anticancer Pt (II) complex, cis-[Pt (NH3)2(tertpentylgly)]NO3, was synthesized with glycine-derivative ligand and characterized. Cytotoxicity of this water-soluble Pt complex was studied against human cancer breast cell line of MCF-7. The interaction of human serum albumin (HSA) with Pt complex was studied by using UV-Vis, fluorescence spectroscopy methods, and molecular docking at 27 and 37 °C in the physiological situation (I = 10 mM, pH = 7.4). The negative [Formula: see text] and positive [Formula: see text] indicated that electrostatic force may be a major mode in the binding between Pt complex and HSA. Binding constant values were obtained through UV-Vis and fluorescence spectroscopy that reveal strong interaction. The negative Gibbs free energy that was obtained by using the UV-Vis method offers spontaneous interaction. Fluorescence quenching the intensity of HSA by adding Pt complex confirms the static mode of interaction is effective for this binding process. Hill coefficients, nH, Hill constant, kH, complex aggregation number around HSA, <J>, number of binding sites, g, HSA melting temperature, Tm, and Stern-Volmer constant, kSV, were also obtained. The kinetics of the interaction was studied, which showed a second-order kinetic. The results of molecular docking demonstrate the position of binding of Pt complex on HSA is the site I in the subdomain IIA.
Collapse
Affiliation(s)
| | - Nasrin Sohrabi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran.
| | | | - Mohsen Oftadeh
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
6
|
DNA as a Target for Anticancer Phen-Imidazole Pd(II) Complexes. Appl Biochem Biotechnol 2016; 182:110-127. [DOI: 10.1007/s12010-016-2314-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/30/2016] [Indexed: 01/29/2023]
|
7
|
Shahabadi N, Hakimi M, Morovati T, Hadidi S, Moeini K. Spectroscopic investigation into the interaction of a diazacyclam-based macrocyclic copper(ii) complex with bovine serum albumin. LUMINESCENCE 2016; 32:43-50. [PMID: 27162056 DOI: 10.1002/bio.3146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 11/07/2022]
Abstract
Cyclam-based ligands and their complexes are known to show antitumor activity. This study was undertaken to examine the interaction of a diazacyclam-based macrocyclic copper(II) complex with bovine serum albumin (BSA) under physiological conditions. The interactions of different metal-based drugs with blood proteins, especially those with serum albumin, may affect the concentration and deactivation of metal drugs, and thereby influence their availability and toxicity during chemotherapy. In this vein, several spectral methods including UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy techniques were used. Spectroscopic analysis of the fluorescence quenching confirmed that the Cu(II) complex quenched BSA fluorescence intensity by a dynamic mechanism. In order to further determine the quenching mechanism, an analysis of Stern-Volmer plots at various concentrations of BSA was carried out. It was found that the KSV value increased with the BSA concentration. It was suggested that the fluorescence quenching process was a dynamic quenching rather than a static quenching mechanism. Based on Förster's theory, the average binding distance between the Cu(II) complex and BSA (r) was found to be 4.98 nm; as the binding distance was less than 8 nm, energy transfer from BSA to the Cu(II) complex had a high possibility of occurrence. Thermodynamic parameters (positive ΔH and ΔS values) and measurement of competitive fluorescence with 1-anilinonaphthalene-8-sulphonic acid (1,8-ANS) indicated that hydrophobic interaction plays a major role in the Cu(II) complex interaction with BSA. A Job's plot of the results confirmed that there was one binding site in BSA for the Cu(II) complex (1:1 stoichiometry). The site marker competitive experiment confirmed that the Cu(II) complex was located in site I (subdomain IIA) of BSA. Finally, CD data indicated that interaction of the Cu(II) complex with BSA caused a small increase in the α-helical content. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Iran
| | - Mohammad Hakimi
- Department of Chemistry, Payame Noor University, 19395, -4697, Tehran, Iran
| | - Teimoor Morovati
- Department of Chemistry, Payame Noor University, 19395, -4697, Tehran, Iran
| | - Saba Hadidi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Iran
| | - Keyvan Moeini
- Department of Chemistry, Payame Noor University, 19395, -4697, Tehran, Iran
| |
Collapse
|
8
|
Coban B, Tekin IO, Sengul A, Yildiz U, Kocak I, Sevinc N. DNA studies of newly synthesized heteroleptic platinum(II) complexes [Pt(bpy)(iip)](2+) and [Pt(bpy)(miip)](2.). J Biol Inorg Chem 2015; 21:163-75. [PMID: 26626200 DOI: 10.1007/s00775-015-1317-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Two new mono-nuclear heteroleptic platinum(II) complexes, [Pt(bpy)(iip)](PF6)2 (1) and [Pt(bpy)(miip)](PF6)2·2H2O (2) (bpy is 2,2'-bipyridine; iip is 2-(imidazo-4-yl)-1H-imidazo[4,5-f] [1,10] phenanthroline; miip is 2-(1-methylimidazo-2-yl)-1H-imidazo[4,5-f] [1, 10] phenanthroline), have been synthesized and fully characterized by CHN analysis, electrospray ionization and MALDI-TOF mass spectrometry, (1)H NMR, FT-IR (ATR), and UV-Vis spectrophotometer. Cytotoxicity, ability to inhibit DNA transcription and DNAse activity of the complexes were studied. The DNA-binding behaviors of both complexes have also been studied by spectroscopic methods, cyclic voltammetry and viscosity measurements. Both complexes showed cytotoxic properties and 2 was more cytotoxic than 1. DNA transcription was inhibited upon increasing concentrations of both complexes. The complex 2 was found to be a better inhibitor than 1. The same pattern can be seen in the DNAse profile of the complexes. In addition, 2 was found to promote cleavage of pBR322 DNA at a lower concentration than 1. The spectroscopic, electrochemical and viscometric results indicate that both complexes show some degree of binding to DNA in an intercalative mode, resulting in intrinsic binding constants K b = 3.55 ± 0.6 × 10(4) M(-1) and 7.01 ± 0.9 × 10(4) M(-1) for 1 and 2, respectively. The difference in the DNA-binding affinities of 1 and 2 may presumably be explained by the methylated imidazole nitrogen atom that makes the compound more hydrophobic and gives better intercalative binding ability to DNA's hydrophobic environment.
Collapse
Affiliation(s)
- Burak Coban
- Department of Chemistry, Faculty of Arts and Sciences, Bulent Ecevit University, 67100, Zonguldak, Turkey.
| | - Ishak Ozel Tekin
- Department of Immunology, Faculty of Medicine, Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Abdurrahman Sengul
- Department of Chemistry, Faculty of Arts and Sciences, Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Ufuk Yildiz
- Department of Chemistry, Faculty of Arts and Sciences, Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Izzet Kocak
- Department of Chemistry, Faculty of Arts and Sciences, Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Nergis Sevinc
- Department of Immunology, Faculty of Medicine, Bulent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
9
|
Fang Y, Xu H, Shen L, Huang F, Yibulayin S, Huang S, Tian S, Hu Z, He Z, Li F, Li Y, Zhou K. Study on the mechanism of the interaction between acteoside and pepsin using spectroscopic techniques. LUMINESCENCE 2015; 30:859-66. [DOI: 10.1002/bio.2833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/28/2014] [Accepted: 11/19/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Yifeng Fang
- College of Life Sciences; Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University; Shenzhen 518060 China
| | - Hong Xu
- College of Life Sciences; Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University; Shenzhen 518060 China
| | - Liangliang Shen
- College of Life Sciences; Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University; Shenzhen 518060 China
| | - Fengwen Huang
- College of Life Sciences; Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University; Shenzhen 518060 China
| | - Shadaiti Yibulayin
- College of Life Sciences; Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University; Shenzhen 518060 China
| | - Songyang Huang
- College of Life Sciences; Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University; Shenzhen 518060 China
| | - Shengli Tian
- College of Life Sciences; Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University; Shenzhen 518060 China
| | - Zhangli Hu
- College of Life Sciences; Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University; Shenzhen 518060 China
| | - Zhendan He
- School of Medicine; Shenzhen University; Shenzhen 518060 China
| | - Fangrong Li
- Shenzhen Entry-Exit inspection and Quarantine Bureau; Shenzhen 518001 China
| | - Yinong Li
- Shenzhen Entry-Exit inspection and Quarantine Bureau; Shenzhen 518001 China
| | - Kai Zhou
- Shenzhen Marine Environment and Resource Monitoring Center; Shenzhen 518060 China
| |
Collapse
|
10
|
Song Y, Liu Y, Liu W, Villamena FA, Zweier JL. Characterization of the Binding of the Finland Trityl Radical with Bovine Serum Albumin. RSC Adv 2014; 4:47649-47656. [PMID: 26257888 DOI: 10.1039/c4ra04616a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the interactions of trityl radicals with proteins is required to expand their biomedical applications. In this work, we demonstrate that the Finland trityl radical CT-03 binds to bovine serum albumin (BSA) in aqueous solution. Upon binding with BSA, CT-03 exhibits a much broader electron paramagnetic resonance (EPR) signal and this line broadening can be reversed by proteolysis of the BSA. The binding induces a red-shift of the maximal UV-Vis absorbance wavelength of CT-03 around 470 nm, likely due to localization of CT-03 in the relatively hydrophobic region of the protein. The interaction between CT-03 and BSA is driven by a hydrophobic interaction with an estimated binding constant of 2.18 ×105 M-1 at 298 K. Furthermore, only one CT-03 is bound to each molecule of BSA and the binding site is determined to be the sub-domain IIA (Sudlow's site I). This protein binding of the trityl probe to albumin can be used to study the structure and function of albumin and also must be considered for its use as an in vivo imaging agent or spin label.
Collapse
Affiliation(s)
- Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China ; The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio43210, United States
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China ; The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio43210, United States
| | - Wenbo Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Frederick A Villamena
- The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio43210, United States ; Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jay L Zweier
- The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|