1
|
Pinar O, Rodríguez-Couto S. Biologically active secondary metabolites from white-rot fungi. Front Chem 2024; 12:1363354. [PMID: 38545465 PMCID: PMC10970999 DOI: 10.3389/fchem.2024.1363354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, there has been a considerable rise in the production of novel metabolites derived from fungi compared to the ones originating from bacteria. These organic substances are utilized in various sectors such as farming, healthcare, and pharmaceutical. Since all dividing living cells contain primary metabolites, secondary metabolites are synthesized by utilizing intermediate compounds or by-products generated from the primary metabolic pathways. Secondary metabolites are not critical for the growth and development of an organism; however, they exhibit a variety of distinct biological characteristics. White-rot fungi are the only microorganisms able to decompose all wood components. Hence, they play an important role in both the carbon and nitrogen cycles by decomposing non-living organic substrates. They are ubiquitous in nature, particularly in hardwood (e.g., birch and aspen) forests. White-rot fungi, besides ligninolytic enzymes, produce different bioactive substances during their secondary metabolism including some compounds with antimicrobial and anticancer properties. Such properties could be of potential interest for the pharmaceutical industries. Considering the importance of the untapped biologically active secondary metabolites from white-rot fungi, the present paper reviews the secondary metabolites produced by white-rot fungi with different interesting bioactivities.
Collapse
Affiliation(s)
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland
| |
Collapse
|
2
|
Rybczyńska-Tkaczyk K. Enhanced Efficiency of the Removal of Cytostatic Anthracycline Drugs Using Immobilized Mycelium of Bjerkandera adusta CCBAS 930. Molecules 2021; 26:6842. [PMID: 34833934 PMCID: PMC8624642 DOI: 10.3390/molecules26226842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/07/2022] Open
Abstract
The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin-DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| |
Collapse
|
3
|
Zając A, Pięt M, Stefaniuk D, Chojnacki M, Jakubowicz-Gil J, Paduch R, Matuszewska A, Jaszek M. Pro-Health and Anti-Cancer Activity of Fungal Fractions Isolated from Milk-Supplemented Cultures of Lentinus ( Pleurotus) Sajor-caju. Biomolecules 2021; 11:1089. [PMID: 34439756 PMCID: PMC8391637 DOI: 10.3390/biom11081089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to demonstrate Lentinus (formerly Pleurotus) sajor-caju (PSC) as a good source of pro-health substances. It has also shown that supplementation of its culture medium with cow milk may further improve its beneficial properties. Intracellular fractions from fungi grown on a medium supplemented with cow milk were analyzed using various biochemical methods for determination of the nutrient composition. Furthermore, anti-cancer properties of selected extracts were investigated on colorectal cancer cell lines (HT-29, LS 180, and SW948) in vitro. Biochemical analysis showed enrichment in health-enhancing compounds, such as proteins or polysaccharides (about 3.5- and 4.5-fold increase in concentration of proteins and carbohydratesin extracts of mycelia cultured on whole milk (PSC2-I), respectively), with a decrease in the level of free radicals (10-fold decrease in extract grown on milk and medium mixture (1:1) (PSC3-II)), which was related to increased catalase and superoxide dismutase activity (7.5-fold increase in catalase activity and 5-fold in SOD activity in PSC3-II compared to the control). Moreover, the viability of the cancer cells was diminished (to 60.0 ± 6.8% and 40.0 ± 8.6% of the control, on HT-29 and SW948 cells, respectively), along with pro-apoptotic (to 18.8 ± 11.8 and 14.7 ± 8.0% towards LS 180 and SW948 cells, respectively) and NO-secreting effects (about 2-fold increase) of the extracts. This study suggests that PSC has multiple nutritional and anti-cancer properties and can be used as a source of healthy biomolecules in modern medicine or functional foods.
Collapse
Affiliation(s)
- Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Mateusz Pięt
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland; (M.P.); (R.P.)
| | - Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland; (A.M.); (M.J.)
| | - Michał Chojnacki
- Department of Experimental Hematooncology, Medical University of Lublin, 20-031 Lublin, Poland;
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland; (M.P.); (R.P.)
- Department of General Ophthalmology, Medical University of Lublin, 20-031 Lublin, Poland
| | - Anna Matuszewska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland; (A.M.); (M.J.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland; (A.M.); (M.J.)
| |
Collapse
|
4
|
Yang K, Jin Y, Cai M, He P, Tian B, Guan R, Yu G, Sun P. Separation, characterization and hypoglycemic activity in vitro evaluation of a low molecular weight heteropolysaccharide from the fruiting body of Phellinus pini. Food Funct 2021; 12:3493-3503. [PMID: 33900340 DOI: 10.1039/d1fo00297j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Edible mushrooms have potential in anti-diabetic phytotherapy. They are rich in natural compounds such as polysaccharides, which have been known to have antihyperlipidemic effects since ancient times. A polysaccharide fraction of PP80 and a contained low molecular-weight (Mw), water-soluble polysaccharide (PPW-1, Mw: 3.2 kDa) were isolated from the fruiting body of Phellinus pini. Both PP80 and PPW-1 possess α-glucosidase inhibition and glucose consumption amelioration in an insulin-resistant HepG2 cell model. The α-glucosidase inhibitory activity of PPW-1 (IC50 = 2.2 ± 0.1 mg mL-1) is significantly (P < 0.01) higher than those of PP80 (IC50 = 13.1 ± 0.5 mg mL-1) and acarbose (IC50 = 4.3 ± 0.2 mg mL-1), behaving in a non-competitive inhibition manner. The structural characterization results indicated that PPW-1 is a homogeneous heteropolysaccharide composed of d-glucose, d-mannose, d-galactose and l-rhamnose. The major backbone of PPW-1 is primarily comprised of 1,6-linked glucopyranose, every third residue of which is branched at the O-3 position by a side chain consisting of 1,3-linked and terminal glucopyranose. In addition, small amounts of 1,2-linked-α-d-Manp, 1,6-linked-3-O-Me-α-d-Galp and rhamnose exist in PPW-1. In summary, PPW-1 is a novel heteropolysaccharide with potent in vitro hypoglycemic activity, and it may be a potential dietary component for improving glucose homeostasis.
Collapse
Affiliation(s)
- Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuezhong Jin
- Zhejiang Yangzhikang Bio-technology Co., Ltd, Huzhou 313200, P. R. China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Pengfei He
- Marine Fishery Institute of Zhejiang Province, Zhoushan 316021, P. R. China.
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Genrong Yu
- Hangzhou Meiyuan Food Co. Ltd, Huzhou 311106, P. R. China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
5
|
Giri R, Sharma RK. Fungal pretreatment of lignocellulosic biomass for the production of plant hormone by Pichia fermentans under submerged conditions. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00319-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractThe study was designed to evaluate the production of auxin by eukaryotic unicellular organism Pichia fermentans. Different media formulations were used for the production of indole-3-acetic acid (IAA) under broth and submerged conditions. Wheat straw-based production medium was formulated and optimized using statistical approach. The IAA production was significantly enhanced by nine folds, when the wheat straw was pretreated with Phanerochaete chrysosporium (150 µg/ml) as compared to untreated wheat straw (16.44 µg/ml). Partial purification of IAA was carried out by silica gel column chromatography and further confirmed by high-performance liquid chromatography. Exogenous application of crude and partially purified IAA positively influenced the Vigna radiata seedling growth. The number of lateral roots in the growing seedlings was significantly higher as compared to the control seeds. Thus, the present findings point towards an efficient production of plant hormone by yeast and white rot fungus using abundantly available wheat straw, which may lead to the development of cost-effective production of such metabolites and their further use in agricultural field to reduce the negative impact of chemical fertilizers.
Collapse
|
6
|
Antioxidant Potential and Extracellular Auxin Production by White Rot Fungi. Appl Biochem Biotechnol 2018; 187:531-539. [DOI: 10.1007/s12010-018-2842-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
|
7
|
Rudawska A, Haniecka I, Jaszek M, Osińska-Jaroszuk M. The Influence of Biochemical Modification on the Properties of Adhesive Compounds. Polymers (Basel) 2016; 9:polym9010009. [PMID: 30970686 PMCID: PMC6432003 DOI: 10.3390/polym9010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
The main objective of this study was to determine the effect of biochemical modification of epoxy adhesive compounds on the mechanical properties of a cured adhesive exposed to various climatic factors. The epoxy adhesive was modified by lyophilized fungal metabolites and prepared by three methods. Additionally, the adhesive compound specimens were seasoned for two months at a temperature of 50 °C and 50% humidity in a climate test chamber, Espec SH 661. The tensile strength tests of the adhesive compounds were performed using a Zwick/Roell Z150 testing machine in compliance with the DIN EN ISO 527-1 standard. The examination of the adhesive specimens was performed using two microscopes: a LEO 912AB transmission electron microscope equipped with Quantax 200 for EDS X-ray spectroscopy and a Zeiss 510 META confocal microscope coupled to an AxioVert 200M. The experiments involved the use of a CT Skyscan 1172 tomograph. The results revealed that some mechanical properties of the modified adhesives were significantly affected by both the method of preparation of the adhesive compound and the content of the modifying agent. In addition, it was found that seasoning of the modified adhesives does not lead to a decrease in some of their mechanical properties.
Collapse
Affiliation(s)
- Anna Rudawska
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland.
| | - Izabela Haniecka
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland.
| | - Magdalena Jaszek
- Department of Biochemistry, Maria Sklodowska-Curie University, 20-033 Lublin, Poland.
| | | |
Collapse
|