1
|
Lu C, Wu J, Li X, Huang W, Fang Y, Huang Y. Hsa_circ_0003356 suppresses gastric cancer progression via miR-556-5p/FKBP5 axis. Toxicol In Vitro 2024; 97:105787. [PMID: 38401744 DOI: 10.1016/j.tiv.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND CircRNAs are implicated in the tumorigenesis of various human cancers. This study aims to explore how circ_0003356 contributes to the development of gastric cancer (GC). METHODS Circ_0003356 expression was analyzed in GSE184882 dataset and validated in our cohort of GC patients and human GC cell lines. The correlations between circ_0003356 levels and prognostic parameters were analyzed. The contribution of circ_0003356 in GC cell malignant behaviors such as cell survival, apoptosis and invasion were investigated by circ_0003356 overexpression in GC cell lines. The downstream targets of circ_0003356 were predicted and verified in vitro and in vivo. The in vivo function of circ_0003356 was studied as well in a xenograft mouse model. RESULTS Circ_0003356 expressed at a low level in human GC tissues and cells, which was closely associated with poor outcome of GC patients. Circ_0003356 overexpression induced GC cell apoptosis while depressed the growing, migration and invasive abilities through miR-556-5p/FKBP5 axis. In vivo model showed retarded tumor growth when circ_0003356-overexpressed cells were inoculated. CONCLUSION Circ_0003356 is identified as a potential biomarker of the prognosis of human gastric cancer, and circ_0003356/miR-556-5p/FKBP5 axis could be a promising target in gastric cancer treatment.
Collapse
Affiliation(s)
- Chuanhui Lu
- Department of Colorectal Cancer Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine. The School of Clinical Medicine,Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jing Wu
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China
| | - Xiaoguang Li
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China
| | - Wei Huang
- Department of General Surgery, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Yongmu Fang
- Department of General Surgery, The Third Hospital of Xiamen(The Third Hospital of Xiamen Affiliated with Fujian University of Traditional Chinese Medicine), Xiamen, Fujian 361000, China.
| | - Ying Huang
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China.
| |
Collapse
|
2
|
MiR-20a-5p functions as a potent tumor suppressor by targeting PPP6C in acute myeloid leukemia. PLoS One 2021; 16:e0256995. [PMID: 34587164 PMCID: PMC8480815 DOI: 10.1371/journal.pone.0256995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is as a highly aggressive and heterogeneous hematological malignancy. MiR-20a-5p has been reported to function as an oncogene or tumor suppressor in several tumors, but the clinical significance and regulatory mechanisms of miR-20a-5p in AML cells have not been fully understood. In this study, we found miR-20a-5p was significantly decreased in bone marrow from AML patients, compared with that in healthy controls. Moreover, decreased miR-20a-5p expression was correlated with risk status and poor survival prognosis in AML patients. Overexpression of miR-20a-5p suppressed cell proliferation, induced cell cycle G0/G1 phase arrest and apoptosis in two AML cell lines (THP-1 and U937) using CCK-8 assay and flow cytometry analysis. Moreover, miR-20a-5p overexpression attenuated tumor growth in vivo by performing tumor xenograft experiments. Luciferase reporter assay and western blot demonstrated that protein phosphatase 6 catalytic subunit (PPP6C) as a target gene of miR-20a-5p was negatively regulated by miR-20a-5p in AML cells. Furthermore, PPP6C knockdown imitated, while overexpression reversed the effects of miR-20a-5p overexpression on AML cell proliferation, cell cycle G1/S transition and apoptosis. Taken together, our findings demonstrate that miR-20a-5p/PPP6C represent a new therapeutic target for AML and a potential diagnostic marker for AML therapy.
Collapse
|
3
|
Xi ZH, Ma XX, Chen HY, Yu YH, Li L, Huang T. A Metabolic-associated Nomogram Predicts Recurrence Survival of Thyroid Cancer. Curr Med Sci 2021; 41:1004-1011. [PMID: 34510328 DOI: 10.1007/s11596-021-2399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Various studies have suggested that metabolic genes play a significant role in papillary thyroid cancer (PTC). The current study aimed to identify a metabolic signature related biomarker to predict the prognosis of patients with PTC. METHODS We conducted a comprehensive analysis on the data obtained from the Cancer Genome Atlas (TCGA) database. The correlation between survival result and metabolic genes was evaluated based on the univariate Cox analyses, least absolute shrinkage and selection operator (LASSO) and multivariate Cox analyses. The performance of a 7-gene signature was assessed according to Kaplan-Meier and receiver operating characteristic (ROC) analysis. Multivariate Cox regression analysis was adopted to unearth clinical factors related to the recurrence free survival (RFS) of patients with PTC. Finally, a prognostic nomogram was developed based on risk score, cancer status and cancer width to improve the prediction for RFS of PTC patients. RESULTS Seven metabolic genes were used to establish the prognostic model. The ROC curve and C-index exhibited high value in training, testing and the whole TCGA datasets. The established nomogram, incorporating the 7-metabolic gene signature and clinical factors, was able to predict the RFS with high effectiveness. The 7-metabolic gene signature-based nomogram had a good performance to predict the RFS of patients with PTC. CONCLUSION Our study identified a 7-metabolic gene signature and established a prognostic nomogram, which were useful in predicting the RFS of PTC.
Collapse
Affiliation(s)
- Zi-Han Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xian-Xiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng-Yu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, 300134, China
| | - Yuan-Hang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Zhang X, Wang J, Pan Y, Zhao J, Pan Y, Yan Y, Shen Z. MicroRNA-365b-3p represses the proliferation and promotes the apoptosis of non-small cell lung cancer cells by targeting PPP5C. Oncol Lett 2021; 21:389. [PMID: 33777212 PMCID: PMC7988734 DOI: 10.3892/ol.2021.12650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNA (miR)-365b-3p has been recently reported to induce cell cycle arrest and apoptosis in retinoblastoma; however, its expression pattern and biological function in non-small cell lung cancer (NSCLC) remain unknown. The present study aimed to investigate the functional role of miR-365b-3p in NSCLC. The results demonstrated that miR-365b-3p expression level was significantly decreased in NSCLC tissues and cell lines compared with controls using reverse transcriptase quantitative PCR. Furthermore, miR-365b-3p expression level was overexpressed by miR-365b-3p mimics transfection in A549 cells, whereas it was downregulated following H1299 cell transfection with miR-365b-3p inhibitor. Restoration of miR-365b-3p inhibited cell proliferation, induced cell cycle G0/G1 arrest and stimulated apoptosis in A549 cells using CCK-8 assay, colony formation and flow cytometry assay. However, miR-365b-3p inhibitor had the opposite effects in H1299 cells. Furthermore, results from bioinformatics analysis and luciferase reporter assay confirmed that serine/threonine protein phosphatase 5 (PPP5C) was a direct target of miR-365b-3p. In addition, online Kaplan-Meier plotter software demonstrated that high PPP5C expression level was associated with lower overall survival and disease-free survival in patients with NSCLC. Furthermore, PPP5C knockdown imitated the effects of miR-365b-3p mimics on A549 cell proliferation, cell cycle distribution and apoptosis, whereas its overexpression rescued the effects of miR-365b-3p mimics on A549 cell proliferation, cell cycle distribution and apoptosis. In conclusion, the findings from the present study suggested that miR-365b-3p may partly suppress NSCLC cell behaviors by targeting PPP5C, which may represent a promising therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Xiaomiao Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Jin Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yuqin Pan
- Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Jun Zhao
- Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yingge Pan
- Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yunqi Yan
- Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
| |
Collapse
|
5
|
Bertucci EM, Mason MW, Camus AC, Rhodes OE, Parrott BB. Chronic low dose irradiation alters hepatic transcriptional profiles, but not global DNA methylation in medaka (Oryzias latipes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138680. [PMID: 32361431 DOI: 10.1016/j.scitotenv.2020.138680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation (IR) resulting from both natural and anthropogenic sources is ubiquitous throughout the environment. Historically, studies on the biological impacts of radiation primarily focused on responses to acute doses of radiation, with little advancement in our understanding of environmentally relevant exposures. Epigenetic mechanisms are capable of mediating organismal responses to environmental stressors and DNA methylation plays important roles in gene regulation and promoting chromosomal stability. Here, we assess broad-scale transcriptional and epigenetic variation resulting from chronic exposure to low doses of ionizing radiation (LDIR; 5.78, 53.76, or 520.23 mGy/day) using Japanese medaka fish (Oryzias latipes) in a replicated mesocosm design. We observed significant changes to the hepatic transcriptome induced by a 3-month chronic exposure to IR, whereas global DNA methylation appeared largely unaffected. Our findings reveal a set of genes, including those involved in immune function, responding to environmentally relevant IR exposures, which do not appear to be mediated by a systemic global shift in DNA methylation.
Collapse
Affiliation(s)
- Emily M Bertucci
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Marilyn W Mason
- Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Alvin C Camus
- College of Veterinary Medicine Department of Pathology, University of Georgia, 501 D.W. Brooks Drive, Athens 30602, GA, USA.
| | - Olin E Rhodes
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Benjamin B Parrott
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| |
Collapse
|
6
|
Zhu X, Sun L, He Y, Wei H, Hong M, Liu F, Liu Q, Cao Y, Cui L. Plasmodium berghei serine/threonine protein phosphatase PP5 plays a critical role in male gamete fertility. Int J Parasitol 2019; 49:685-695. [DOI: 10.1016/j.ijpara.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
7
|
Hu MH, Huang TT, Chao TI, Chen LJ, Chen YL, Tsai MH, Liu CY, Kao JH, Chen KF. Serine/threonine protein phosphatase 5 is a potential therapeutic target in cholangiocarcinoma. Liver Int 2018; 38:2248-2259. [PMID: 29797403 DOI: 10.1111/liv.13887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/20/2018] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Few molecules are currently verified to be actionable drug targets in cholangiocarcinoma (CCA). Serine/threonine protein phosphatase 5 (PP5) dysregulation is related to several malignancies. However, the role of PP5 in CCA is poorly defined. METHODS Colony and tumorsphere formation assays were conducted to establish the role of PP5 in CCA tumorigenesis. Cantharidin (CTD) and norcantharidin (NCTD), both potent PP5 inhibitors, were used in in vitro and in vivo experiments to validate the potential therapeutic role of PP5. RESULTS Increased cell growth, colony formation and tumorsphere formation were observed in PP5-overexpressing CCA cells, whereas PP5 knockdown by shRNA decreased cell growth and colony formation. Tumours from HuCCT1 xenograft-bearing mice treated with PP5-shRNA showed decreased growth and increased AMP-activated protein kinase (AMPK) phosphorylation. Furthermore, CTD treatment decreased cell viability, reduced PP5 activity and enhanced AMPK phosphorylation in CCA cell lines. Overexpressing PP5 or enhancing PP5 activity suppressed AMPK phosphorylation and decreased CTD-induced cell death. Suppressing p-AMPK with siRNA or inhibitors also decreased CTD-induced cell death, suggesting a pivotal role for PP5-AMPK cascades in CCA. Immunoprecipitation revealed that PP5 interacted with AMPK. Importantly, treatment of HuCCT1 xenograft-bearing mice with NCTD, a CTD analogue with a lower systemic toxicity in vivo, suppressed PP5 activity, increased p-AMPK and reduced tumour volume. CONCLUSIONS Protein phosphatase 5 negatively regulates AMPK phosphorylation and contributes to CCA aggressiveness; thus, PP5 may be a potential therapeutic target in CCA.
Collapse
Affiliation(s)
- Ming-Hung Hu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Tzu-I Chao
- Transplant Medicine & Surgery Research Centre, Changhua Christian Hospital, Changhua, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Lv JM, Chen L, Gao Y, Huang H, Pan XW, Liu X, Chen M, Qu FJ, Li L, Wang JK, Cui XG, Xu DF. PPP5C promotes cell proliferation and survival in human prostate cancer by regulating of the JNK and ERK1/2 phosphorylation. Onco Targets Ther 2018; 11:5797-5809. [PMID: 30254472 PMCID: PMC6140725 DOI: 10.2147/ott.s161280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most common malignancies and a major leading cause of cancer-related deaths in males. And it is necessary to explore new molecular targets to enhance diagnosis and treatment level of the PCa. Serine/threonine protein phosphatase 5 (PPP5C) is a vital molecule that Involve in complex cell physiological activity. Purpose The objective of this study was to detecte the expression level of PPP5C in the tissue of prostate cancer patients and further discussed the PPP5C biological function and mechanisms on the PCa. Methods The expression level of PPP5C was analyzed by immunohistochemistry and ONCOM-INE datasets. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to silence the expression of PPP5C in prostate cancer cell. Cell viability and proliferation were measured using MTT and colony formation, and the cell cycle and apoptosis was analyszed by flow cytometry. The changes of downstream protein level and protein phosphorylation level were detected by western blot. Results PPP5C was highly expressed in PCa tissue as analyzed by immunohistochemistry and ONCOMINE datasets. PPP5C Knockdown inhibited cell proliferation and colony formation in PCa cells. Flow cytometry analysis showed that DU145, PC3 and 22RV1 PCa cells deprived of PPP5C were arrested in G0/G1 phase and became apoptotic. Western blot analysis indicated that PPP5C knockdown could promote JNK and ERK phosphorylation. Conclusion Our study indicated that the PPP5C may become a new potential diagnostic biomarker and therapeutic target for the PCa.
Collapse
Affiliation(s)
- Jian-Min Lv
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China, .,Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Lu Chen
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Yi Gao
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Hai Huang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China, .,Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Xiu-Wu Pan
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Xi Liu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Ming Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fa-Jun Qu
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Lin Li
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Jun-Kai Wang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China, .,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University, Shanghai 200135, China,
| | - Dan-Feng Xu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| |
Collapse
|
9
|
Huang CY, Hsieh FS, Wang CY, Chen LJ, Chang SS, Tsai MH, Hung MH, Kuo CW, Shih CT, Chao TI, Chen KF. Palbociclib enhances radiosensitivity of hepatocellular carcinoma and cholangiocarcinoma via inhibiting ataxia telangiectasia-mutated kinase-mediated DNA damage response. Eur J Cancer 2018; 102:10-22. [PMID: 30103095 DOI: 10.1016/j.ejca.2018.07.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
AIM Palbociclib is an oral cyclin-dependent kinase 4/6 inhibitor, which is efficacious in treating breast cancer. Currently, there are numerous active clinical trials testing palbociclib alone or in combination with other medications for treating various types of malignancies. Here, we evaluated the anti-cancer effect of palbociclib in combination with radiation therapy (RT) for treating human hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) and addressed the molecular mechanism behind the combination therapy. METHODS Immunofluorescence staining of γH2AX or 53BP1 was used to determine the effect of palbociclib on double-strand break (DSB) repair. Clonogenic assays, sphere formation and cell death ELISA were performed to study the sensitising effect of palbociclib on radiation-induced cytotoxicity. Signal alteration in DSB repair pathways was examined by Western blot analysis. Finally, we evaluated the in vivo anti-cancer activity and the associated molecular events of the combination therapy in a preclinical HCC xenograft model. RESULTS Palbociclib affected the kinetics of DNA repair and enhanced the radiation sensitivity of HCC and CCA cells. Importantly, we found that palbociclib inhibits ataxia telangiectasia-mutated (ATM) kinase, the key upstream kinase responding to RT-induced DSBs. Furthermore, we showed that the inhibitory effect of palbociclib on RT-induced ATM kinase activation is mediated by protein phosphatase 5 (PP5). Both in vitro and in vivo investigations revealed that the inhibition of the PP5-ATM axis by palbociclib after DNA damage is responsible for the synergism between palbociclib and RT. CONCLUSION Our findings provide a novel combination strategy against liver cancer cells. Clinical trials using palbociclib as an adjuvant in RT are warranted.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Feng-Shu Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Shin Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Wen Kuo
- Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Chi-Ting Shih
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
10
|
Zhu J, Ji Y, Yu Y, Jin Y, Zhang X, Zhou J, Chen Y. Knockdown of serine/threonine protein phosphatase 5 enhances gemcitabine sensitivity by promoting apoptosis in pancreatic cancer cells in vitro. Oncol Lett 2018; 15:8761-8769. [PMID: 29805615 DOI: 10.3892/ol.2018.8363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/22/2017] [Indexed: 12/28/2022] Open
Abstract
The targeting protein of serine/threonine protein phosphatase 5 (PPP5C) has been reported to be present in various malignancies. However, its functional role in pancreatic cancer (PC) remains unknown. In the present study, the function of PPP5C in PC cells treated with the first-line drug gemcitabine (GEM) was investigated. Short hairpin (sh)RNA targeting PPP5C was constructed to knockdown PPP5C in PANC-1 cells. Cell cycle and apoptosis analyses were performed in order to investigate the mechanisms underlying the effects induced by PPP5C silencing combined with GEM treatment. Western blot analysis was applied to detect the expression of certain key regulators of cell apoptosis in PANC-1 cells treated with GEM. shRNA against PPP5C effectively suppressed the proliferation of PANC-1 cells treated with GEM. Additionally, cell cycle analysis indicated that PPP5C knockdown resulted in a higher number of PANC-1 cells treated with GEM in G0/G1 phase arrest. Knockdown of PPP5C increased the expression of associated apoptotic markers, including cleaved caspase 3, poly (ADP-ribose) polymerase and phosphorylated (p)-p53. In addition, the combination of treatment with GEM and PPP5C silencing significantly increased the apoptosis of PANC-1 cells by affecting the expression levels of p-c-Jun N-terminal kinases and p-p38. The present study suggests that PPP5C may be a potential target for the treatment of PC and that it may enhance the gemcitabine sensitivity of PC cells.
Collapse
Affiliation(s)
- Jinhui Zhu
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Ji
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuanquan Yu
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Jin
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoxiao Zhang
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiale Zhou
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan Chen
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
11
|
Hsieh FS, Hung MH, Wang CY, Chen YL, Hsiao YJ, Tsai MH, Li JR, Chen LJ, Shih CT, Chao TI, Chen KF. Inhibition of protein phosphatase 5 suppresses non-small cell lung cancer through AMP-activated kinase activation. Lung Cancer 2017; 112:81-89. [DOI: 10.1016/j.lungcan.2017.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022]
|
12
|
Chen YL, Hung MH, Chu PY, Chao TI, Tsai MH, Chen LJ, Hsiao YJ, Shih CT, Hsieh FS, Chen KF. Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase. Biochem Pharmacol 2017; 138:49-60. [DOI: 10.1016/j.bcp.2017.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/12/2017] [Indexed: 11/27/2022]
|
13
|
Hsieh FS, Chen YL, Hung MH, Chu PY, Tsai MH, Chen LJ, Hsiao YJ, Shih CT, Chang MJ, Chao TI, Shiau CW, Chen KF. Palbociclib induces activation of AMPK and inhibits hepatocellular carcinoma in a CDK4/6-independent manner. Mol Oncol 2017; 11:1035-1049. [PMID: 28453226 PMCID: PMC5537702 DOI: 10.1002/1878-0261.12072] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022] Open
Abstract
Palbociclib, a CDK4/6 inhibitor, has recently been approved for hormone receptor‐positive breast cancer patients. The effects of palbociclib as a treatment for other malignancies, including hepatocellular carcinoma (HCC), are of great clinical interest and are under active investigation. Here, we report the effects and a novel mechanism of action of palbociclib in HCC. We found that palbociclib induced both autophagy and apoptosis in HCC cells through a mechanism involving 5′ AMP‐activated protein kinase (AMPK) activation and protein phosphatase 5 (PP5) inhibition. Blockade of AMPK signals or ectopic expression of PP5 counteracted the effect of palbociclib, confirming the involvement of the PP5/AMPK axis in palbociclib‐mediated HCC cell death. However, CDK4/6 inhibition by lentivirus‐mediated shRNA expression did not reproduce the effect of palbociclib‐treated cells, suggesting that the anti‐HCC effect of palbociclib is independent of CDK4/6. Moreover, two other CDK4/6 inhibitors (ribociclib and abemaciclib) had minimal effects on HCC cell viability and the PP5/AMPK axis. Palbociclib also demonstrated significant tumor‐suppressive activity in a HCC xenograft model, which was associated with upregulation of pAMPK and PP5 inhibition. Finally, we analyzed 153 HCC clinical samples and found that PP5 expression was highly tumor specific and was associated with poor clinical features. Taken together, we conclude that palbociclib exerted antitumor activity against HCC through the PP5/AMPK axis independent of CDK4/6. Our findings provide a novel mechanistic basis for palbociclib and reveal the therapeutic potential of targeting PP5/AMPK signaling with a PP5 inhibitor for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Feng-Shu Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Taiwan.,School of Medicine, Kaohsiung Medical University, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Jen Hsiao
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Ting Shih
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Mao-Ju Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-I Chao
- Transplant Medicine & Surgery Research Centre, Changhua Christian Hospital, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Hong TJ, Park K, Choi EW, Hahn JS. Ro 90-7501 inhibits PP5 through a novel, TPR-dependent mechanism. Biochem Biophys Res Commun 2017; 482:215-220. [DOI: 10.1016/j.bbrc.2016.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
|