1
|
Paliwal D, Thom M, Hussein A, Ravishankar D, Wilkes A, Charleston B, Jones IM. Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant Mycobacterium bovis Proteins. Front Mol Biosci 2022; 9:889667. [PMID: 36032666 PMCID: PMC9402895 DOI: 10.3389/fmolb.2022.889667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Areej Hussein
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alex Wilkes
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Ian M. Jones,
| |
Collapse
|
2
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
3
|
Amegbor PM, Zhang Z, Dalgaard R, Sabel CE. Multilevel and spatial analyses of childhood malnutrition in Uganda: examining individual and contextual factors. Sci Rep 2020; 10:20019. [PMID: 33208763 PMCID: PMC7676238 DOI: 10.1038/s41598-020-76856-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, we examine the concepts of spatial dependence and spatial heterogeneity in the effect of macro-level and micro-level factors on stunting among children aged under five in Uganda. We conducted a cross-sectional analysis of 3624 Ugandan children aged under five, using data from the 2016 Ugandan Demographic and Health Survey. Multilevel mixed-effect analysis, spatial regression methods and multi-scale geographically weight regression (MGWR) analysis were employed to examine the association between our predictors and stunting as well as to analyse spatial dependence and variability in the association. Approximately 28% of children were stunted. In the multilevel analysis, the effect of drought, diurnal temperature and livestock per km2 on stunting was modified by child, parent and household factors. Likewise, the contextual factors had a modifiable effect on the association between child’s sex, mother’s education and stunting. The results of the spatial regression models indicate a significant spatial error dependence in the residuals. The MGWR suggests rainfall and diurnal temperature had spatial varying associations with stunting. The spatial heterogeneity of rainfall and diurnal temperature as predictors of stunting suggest some areas in Uganda might be more sensitive to variability in these climatic conditions in relation to stunting than others.
Collapse
Affiliation(s)
- Prince M Amegbor
- Big Data Centre for Environment and Health (BERTHA), Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark. .,Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Zhaoxi Zhang
- Big Data Centre for Environment and Health (BERTHA), Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.,Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Rikke Dalgaard
- Big Data Centre for Environment and Health (BERTHA), Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.,Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Clive E Sabel
- Big Data Centre for Environment and Health (BERTHA), Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.,Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
4
|
Egbebiyi TS, Crespo O, Lennard C, Zaroug M, Nikulin G, Harris I, Price J, Forstenhäusler N, Warren R. Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa. PeerJ 2020; 8:e8851. [PMID: 32411508 PMCID: PMC7207215 DOI: 10.7717/peerj.8851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/04/2020] [Indexed: 01/23/2023] Open
Abstract
West African rainfed agriculture is highly vulnerable to climate variability and change. Global warming is projected to result in higher regional warming and have a strong impact on agriculture. This study specifically examines the impact of global warming levels (GWLs) of 1.5°, 2° and 3 °C relative to 1971–2000 on crop suitability over West Africa. We used 10 Coupled Model Intercomparison Project Phase5 Global Climate Models (CMIP5 GCMs) downscaled by Coordinated Regional Downscaling Experiment (CORDEX) Rossby Centre’s regional Atmospheric model version 4, RCA4, to drive Ecocrop, a crop suitability model, for pearl millet, cassava, groundnut, cowpea, maize and plantain. The results show Ecocrop simulated crop suitability spatial representation with higher suitability, observed to the south of latitude 14°N and lower suitability to its north for 1971–2000 for all crops except for plantain (12°N). The model also simulates the best three planting months within the growing season from September-August over the past climate. Projected changes in crop suitability under the three GWLs 1.5–3.0 °C suggest a spatial suitability expansion for legume and cereal crops, notably in the central southern Sahel zone; root and tuber and plantain in the central Guinea-Savanna zone. In contrast, projected decreases in the crop suitability index value are predicted to the south of 14°N for cereals, root and tuber crops; nevertheless, the areas remain suitable for the crops. A delay of between 1-3 months is projected over the region during the planting month under the three GWLs for legumes, pearl millet and plantain. A two month delay in planting is projected in the south, notably over the Guinea and central Savanna zone with earlier planting of about three months in the Savanna-Sahel zones. The effect of GWL2.0 and GWL3.0 warming in comparison to GWL1.5 °C are more dramatic on cereals and root and tuber crops, especially cassava. All the projected changes in simulated crop suitability in response to climatic variables are statistically significant at 99% confidence level. There is also an increasing trend in the projected crop suitability change across the three warming except for cowpea. This study has implications for improving the resilience of crop production to climate changes, and more broadly, to food security in West Africa.
Collapse
Affiliation(s)
- Temitope Samuel Egbebiyi
- Climate System Analysis Group (CSAG), Department of Environmental and Geographical Science, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Olivier Crespo
- Climate System Analysis Group (CSAG), Department of Environmental and Geographical Science, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Christopher Lennard
- Climate System Analysis Group (CSAG), Department of Environmental and Geographical Science, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Modathir Zaroug
- Climate System Analysis Group (CSAG), Department of Environmental and Geographical Science, University of Cape Town, Cape Town, Western Cape, South Africa.,African Climate and Development Initiative (ACDI), University of Cape Town, South Africa.,Nile Basin Initiative Secretariat, Entebbe, Uganda
| | - Grigory Nikulin
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Ian Harris
- Climate Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jeff Price
- Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Nicole Forstenhäusler
- Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Rachel Warren
- Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
5
|
Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines (Basel) 2020; 8:vaccines8010132. [PMID: 32192117 PMCID: PMC7157650 DOI: 10.3390/vaccines8010132] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a major pathogen causing pneumonia with over 2 million deaths annually, especially in young children and the elderly. To date, at least 98 different pneumococcal capsular serotypes have been identified. Currently, the vaccines for prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes and are unable to protect against non-vaccine serotypes and unencapsulated S. pneumoniae. This has led to a rapid increase in antibiotic-resistant non-vaccine serotypes. Hence, there is an urgent need to develop new, effective, and affordable pneumococcal vaccines, which could cover a wide range of serotypes. This review discusses the new approaches to develop effective vaccines with broad serotype coverage as well as recent development of promising pneumococcal vaccines in clinical trials. New vaccine candidates are the inactivated whole-cell vaccine strain (Δpep27ΔcomD mutant) constructed by mutations of specific genes and several protein-based S. pneumoniae vaccines using conserved pneumococcal antigens, such as lipoprotein and surface-exposed protein (PspA). Among the vaccines in Phase 3 clinical trials are the pneumococcal conjugate vaccines, PCV-15 (V114) and 20vPnC. The inactivated whole-cell and several protein-based vaccines are either in Phase 1 or 2 trials. Furthermore, the recent progress of nanoparticles that play important roles as delivery systems and adjuvants to improve the performance, as well as the immunogenicity of the nanovaccines, are reviewed.
Collapse
|
6
|
Misra N, Pu X, Holt DN, McGuire MA, Tinker JK. Immunoproteomics to identify Staphylococcus aureus antigens expressed in bovine milk during mastitis. J Dairy Sci 2018; 101:6296-6309. [PMID: 29729920 DOI: 10.3168/jds.2017-14040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/18/2018] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen affecting both human and animal species. An effective vaccine to prevent S. aureus bovine disease and transmission would have positive effects on animal well-being, food production, and human health. The objective of this study was to identify multiple antigens that are immunoreactive during udder colonization and disease for exploration as vaccine antigens to prevent bovine mastitis. Staphylococcus aureus produces several cell wall-anchored and surface-associated virulence factors that play key roles in the pathogenesis of mastitis. Many of these proteins are conserved between different strains of S. aureus and represent promising vaccine candidates. We used an immunoproteomics approach to identify antigenic proteins from the surface of S. aureus. The expression of cell wall and surface proteins from S. aureus was induced under low iron conditions, followed by trypsin extraction and separation by 2-dimensional electrophoresis. The separated proteins were blotted with antibodies from mastitic bovine milk and identified by liquid chromatography-mass spectrometry. Thirty-eight unique proteins were identified, of which 8 were predicted to be surface exposed and involved in S. aureus virulence. Two surface proteins, iron-regulated surface determinant protein C (IsdC) and ESAT-6 secretion system extracellular protein (EsxA), were cloned, expressed, and purified from Escherichia coli for confirmation of immune reactivity by ELISA. A PCR of 37 bovine S. aureus isolates indicated that the presence of esxA and isdC is conserved, and amino acid alignments revealed that IsdC and EsxA sequences are highly conserved. The immunoproteomics technique used in this study generated reproducible results and identified surface exposed and reactive antigens for further characterization.
Collapse
Affiliation(s)
- N Misra
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725
| | - X Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725
| | - D N Holt
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725
| | - M A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - J K Tinker
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725; Department of Biological Sciences, Boise State University, Boise, ID 83725.
| |
Collapse
|
7
|
Argondizzo APC, Rocha-de-Souza CM, de Almeida Santiago M, Galler R, Reis JN, Medeiros MA. Pneumococcal Predictive Proteins Selected by Microbial Genomic Approach Are Serotype Cross-Reactive and Bind to Host Extracellular Matrix Proteins. Appl Biochem Biotechnol 2017; 182:1518-1539. [PMID: 28211009 DOI: 10.1007/s12010-017-2415-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a colonizer of the human nasopharynx, which accounts for most of the community-acquired pneumonia cases and can cause non-invasive and invasive diseases. Current available vaccines are serotype-specific and the use of recombinant proteins associated with virulence is an alternative to compose vaccines and to overcome these problems. In a previous work, we describe the identification of proteins in S. pneumoniae by reverse vaccinology and the genetic diversity of these proteins in clinical isolates. It was possible to purify a half of 20 selected proteins in soluble form. The expression of these proteins on the pneumococcal cells surface was confirmed by flow cytometry. We demonstrated that some of these proteins were able to bind to extracellular matrix proteins and were recognized by sera from patients with pneumococcal meningitis infection caused by several pneumococcal serotypes. In this context, our results suggest that these proteins may play a role in pneumococcal pathogenesis and might be considered as potential vaccine candidates.
Collapse
Affiliation(s)
- Ana Paula Corrêa Argondizzo
- Laboratory of Recombinant Technology, Bio-Manguinhos, Brazilian Health Ministry, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Cláudio Marcos Rocha-de-Souza
- Research Laboratory of Hospital Infection, Collection Hospital Origin bacteria cultures, Instituto Oswaldo Cruz, Brazilian Health Ministry, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marta de Almeida Santiago
- Laboratory of Diagnostic Technology, Bio-Manguinhos, Brazilian Health Ministry, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ricardo Galler
- Fiocruz, Bio-Manguinhos, Brazilian Health Ministry, Rio de Janeiro, Brazil
| | - Joice Neves Reis
- School of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Marco Alberto Medeiros
- Laboratory of Recombinant Technology, Bio-Manguinhos, Brazilian Health Ministry, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Meunier M, Guyard-Nicodème M, Hirchaud E, Parra A, Chemaly M, Dory D. Identification of Novel Vaccine Candidates against Campylobacter through Reverse Vaccinology. J Immunol Res 2016; 2016:5715790. [PMID: 27413761 PMCID: PMC4928009 DOI: 10.1155/2016/5715790] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/24/2016] [Indexed: 01/19/2023] Open
Abstract
Campylobacteriosis is the most prevalent bacterial foodborne gastroenteritis affecting humans in the European Union. Human cases are mainly due to Campylobacter jejuni or Campylobacter coli, and contamination is associated with the handling and/or consumption of poultry meat. In fact, poultry constitutes the bacteria's main reservoir. A promising way of decreasing the incidence of campylobacteriosis in humans would be to decrease avian colonization. Poultry vaccination is of potential for this purpose. However, despite many studies, there is currently no vaccine available on the market to reduce the intestinal Campylobacter load in chickens. It is essential to identify and characterize new vaccine antigens. This study applied the reverse vaccinology approach to detect new vaccine candidates. The main criteria used to select immune proteins were localization, antigenicity, and number of B-epitopes. Fourteen proteins were identified as potential vaccine antigens. In vitro and in vivo experiments now need to be performed to validate the immune and protective power of these newly identified antigens.
Collapse
Affiliation(s)
- Marine Meunier
- Unit of Viral Genetics and Biosafety (GVB), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; Unit of Hygiene and Quality of Poultry and Pork Products (HQPAP), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Muriel Guyard-Nicodème
- Unit of Hygiene and Quality of Poultry and Pork Products (HQPAP), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Edouard Hirchaud
- Unit of Viral Genetics and Biosafety (GVB), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | | | - Marianne Chemaly
- Unit of Hygiene and Quality of Poultry and Pork Products (HQPAP), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Daniel Dory
- Unit of Viral Genetics and Biosafety (GVB), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| |
Collapse
|