1
|
Pereira EL, Borges AC, da Silva GJ, Mounteer AH, Pinto FG, Tótola MR. Performance of an anaerobic sequencing batch reactor operating under high organic loading in treatment of biodiesel wastewater. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:785-798. [PMID: 36406624 PMCID: PMC9672234 DOI: 10.1007/s40201-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Studies reporting the performance of anaerobic sequencing batch reactor (AnSBR) operating with high organic loadings are scarce. This study aimed to contribute to the technical and scientific literature by reporting the experience obtained when biodiesel wastewater was treated in an AnSBR applying organic loading rates (OLR) above those commonly used in batch reactor projects. For this, physicochemical and chromatographic analysis of the effluent were carried out. Further, the biomass was assessed chemically and morphologically, along with bacterial diversity characteristics. Supported by these analyses, the system performance was discussed in terms of COD remotion efficiency and buffering capacity. The AnSBR reached 10% of COD removal at the steady-state, which caused the biomass defragmentation and facilitated washout. This suggests that the startup and operation of AnSBR under optimized conditions with an average applied OLR of 11.3 gCOD L-1 d-1 worked as a pressure for the microbiota selection, stimulating the production of total volatile acids, which promoted system reduction efficiency and souring. In this context, food/microorganism ratios above 1.0 gCOD gTVS -1 d-1 can favor acidogenic activity, and total volatile acids/bicarbonate alkalinity concentration ratios above 1.9 may indicate acidification. The addition of support material for immobilizing/increasing biomass retention and/or operation under two-stage may be interesting alternatives for increasing AnSBR efficiencies under high OLRs. Graphical abstract
Collapse
|
2
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB. Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. BIORESOURCE TECHNOLOGY 2022; 351:127045. [PMID: 35331884 DOI: 10.1016/j.biortech.2022.127045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
As a clean energy carrier, hydrogen is a promising alternative to fossil fuel so as the global growing energy demand can be met. Currently, producing hydrogen from biowastes through fermentation has attracted much attention due to its multiple advantages of biowastes management and valuable energy generation. Nevertheless, conventional dark fermentation (DF) processes are still hindered by the low biohydrogen yields and challenges of biohydrogen purification, which limit their commercialization. In recent years, researchers have focused on various advanced strategies for enhancing biohydrogen yields, such as screening of super hydrogen-producing bacteria, genetic engineering, cell immobilization, nanomaterials utilization, bioreactors modification, and combination of different processes. This paper critically reviews by discussing the above stated technologies employed in DF, respectively, to improve biohydrogen generation and stating challenges and future perspectives on biowaste-based biohydrogen production.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Lijuan Deng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
3
|
Cripa FB, Arantes MK, Sequinel R, Fiorini A, Rosado FR, Alves HJ. Poultry slaughterhouse anaerobic ponds as a source of inoculum for biohydrogen production. J Biosci Bioeng 2019; 129:77-85. [PMID: 31591025 DOI: 10.1016/j.jbiosc.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 10/25/2022]
Abstract
Several waste sources have been studied as substrate sources for the production of biogas rich in hydrogen and for the isolation of bacteria capable of fermenting several substrates for the same purpose. Nonetheless, to simplify the process and minimize production costs, it is important to seek alternatives both for the use of microbial consortia using crude waste and for the use of substrates also in their crude form, without the need for purification. The aim of this study was to use only waste as inoculum and substrate for the biological production of hydrogen. Thus, samples from anaerobic ponds of a poultry slaughterhouse were used as inoculum. Sucrose, pure glycerol (in initial tests) and crude glycerol (inserted in blends with pure glycerol) were used as substrates. H2 production experiments were conducted in batches, using a reactor kept in an anaerobic environment for 11 days, at 35°C, under orbital agitation at 150 rpm. To analyse the composition of the biogas and the presence of soluble metabolic products (SMPs), samples of the headspace gases generated and of the reaction medium were collected. The results using sucrose as substrate indicated that the inoculum under study has potential for bio-H2 production, as it produced CH4-free biogas containing 50-60% H2. The inoculum was also shown to be adaptable to the use of glycerine as a substrate, producing biogas with similar characteristics to those obtained from sucrose degradation; however, it required a longer acclimatization period, and thus more in-depth study is required.
Collapse
Affiliation(s)
- Fernanda Bernardo Cripa
- Postgraduate Programme in Bioenergy, Federal University of Paraná UFPR (Sector Palotina), R. Pioneiro, 2153, Jardim Dallas, Palotina, PR 85950-000, Brazil; Laboratory of Catalysis and Biofuel Production (LabCatProBio), Federal University of Paraná UFPR (Sector Palotina), R. Pioneiro, 2153, Jardim Dallas, Palotina, PR 85950-000, Brazil.
| | - Mabel Karina Arantes
- Laboratory of Catalysis and Biofuel Production (LabCatProBio), Federal University of Paraná UFPR (Sector Palotina), R. Pioneiro, 2153, Jardim Dallas, Palotina, PR 85950-000, Brazil
| | - Rodrigo Sequinel
- Laboratory of Catalysis and Biofuel Production (LabCatProBio), Federal University of Paraná UFPR (Sector Palotina), R. Pioneiro, 2153, Jardim Dallas, Palotina, PR 85950-000, Brazil
| | - Adriana Fiorini
- Laboratory of Catalysis and Biofuel Production (LabCatProBio), Federal University of Paraná UFPR (Sector Palotina), R. Pioneiro, 2153, Jardim Dallas, Palotina, PR 85950-000, Brazil
| | - Fábio Rogério Rosado
- Laboratory of Catalysis and Biofuel Production (LabCatProBio), Federal University of Paraná UFPR (Sector Palotina), R. Pioneiro, 2153, Jardim Dallas, Palotina, PR 85950-000, Brazil
| | - Helton José Alves
- Postgraduate Programme in Bioenergy, Federal University of Paraná UFPR (Sector Palotina), R. Pioneiro, 2153, Jardim Dallas, Palotina, PR 85950-000, Brazil; Laboratory of Catalysis and Biofuel Production (LabCatProBio), Federal University of Paraná UFPR (Sector Palotina), R. Pioneiro, 2153, Jardim Dallas, Palotina, PR 85950-000, Brazil
| |
Collapse
|
4
|
Lovato G, Albanez R, Stracieri L, Ruggero LS, Ratusznei SM, Rodrigues JAD. Hydrogen production by co-digesting cheese whey and glycerin in an AnSBBR: Temperature effect. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Albanez R, Lovato G, Ratusznei SM, Zaiat M, Rodrigues JAD. Feasibility of biohydrogen production by co-digestion of vinasse (sugarcane stillage) and molasses in an AnSBBR. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180351s20150807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Roberta Albanez
- Mauá Institute of Technology, Brazil; University of São Paulo, Brazil
| | - Giovanna Lovato
- Mauá Institute of Technology, Brazil; University of São Paulo, Brazil
| | | | | | | |
Collapse
|
6
|
Prakash J, Gupta RK, Xx P, Kalia VC. Bioprocessing of Biodiesel Industry Effluent by Immobilized Bacteria to Produce Value-Added Products. Appl Biochem Biotechnol 2017; 185:179-190. [PMID: 29101733 DOI: 10.1007/s12010-017-2637-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022]
Abstract
Biodiesel industrial effluent rich in crude glycerol (CG) was processed to produce value-added product. Under continuous culture system, Bacillus amyloliquefaciens strain CD16 immobilized within its biofilm, produced 3.2 L H2/day/L feed, over a period of 60 days at a hydraulic retention time of 2 days. The effective H2 yield by B. amyloliquefaciens strain CD16 was 165 L/L CG. This H2 yield was 1.18-fold higher than that observed with non-biofilm forming Bacillus thuringiensis strain EGU45. Bioprocessing of the effluent released after this stage, by recycling it up to 25% did not have any adverse effect on H2 production by strain EGU45; however, a 25% reduction in yield was recorded with strain CD16. Biofilm forming H2 producers thus proved effective as self-immobilizing system leading to enhanced process efficiency.
Collapse
Affiliation(s)
- Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India.
| | - Rahul Kumar Gupta
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India
| | - Priyanka Xx
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India
| |
Collapse
|