1
|
Jana G, Sing S, Das A, Basu A. Interaction of food colorant indigo carmine with human and bovine serum albumins: A multispectroscopic, calorimetric, and theoretical investigation. Int J Biol Macromol 2024; 259:129143. [PMID: 38176484 DOI: 10.1016/j.ijbiomac.2023.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this work we have studied the interaction of the food dye Indigo-Carmine (IndC) with the most studied model transport proteins i.e. human and bovine serum albumin (HSA & BSA). A multispectroscopic approach was used to analyze the details of the binding process. The intrinsic fluorescence of both the albumins was significantly quenched by IndC and the quenching was both static and dynamic in nature with the former being dominant. The HSA-lndC and BSA-IndC distance after complexation was determined by Förster resonance energy transfer (FRET) method which suggested efficient energy transfer from the albumins to IndC. Thermodynamics of serum protein-IndC complexation was estimated by isothermal titration calorimetry (ITC) which revealed that the binding was enthalpy driven. Circular dichroism (CD) and FTIR spectroscopy revealed that the binding of IndC induced secondary structural changes in both the serum proteins. Synchronous and 3D fluorescence spectroscopy revealed that the binding interaction caused microenvironmental changes of protein fluorophores. Molecular docking analysis suggested that hydrogen bonding and hydrophobic interactions are the major forces involved in the complexation process.
Collapse
Affiliation(s)
- Gouranga Jana
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Arindam Das
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
2
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H. Exploring the Interaction Between the Newly Designed Antitumor Zn(II) Complex and CT-DNA/BSA: Spectroscopic Methods, DFT Computational Analysis, and Docking Simulation. Appl Biochem Biotechnol 2023; 195:6276-6308. [PMID: 36856984 DOI: 10.1007/s12010-023-04394-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
A new zinc(II) complex formulated as [Zn(pipr-ac)2], where pipr-ac stands for piperidineacetate, was synthesized and structurally identified with the help of experimental and DFT methods. Frontier molecular orbital (FMO) analysis demonstrated that the new complex has higher biological activity compared to the free ligand. Molecular electrostatic potential (MEP) showed the nitrogen atoms and oxygen of carbonyl groups are the active sites of Zn(II) compound. Also, natural bond orbital (NBO) analysis confirmed the charge transfer from the ligating atoms to the metal ion and formation of four coordinated Zn(II) complex. MTT assay illustrated a noticeable cytotoxic activity of the new zinc(II) complex compared to cisplatin on K562 cell line. The CT-DNA and serum albumin (SA) binding of the Zn(II) complex were explored individually. In this regard, UV-Vis spectroscopy and florescence titration revealed the occurrences of fluorescence quenching of CT-DNA/SA by metal compound via static mechanism and creation of hydrogen bonds and van der Waals interactions between them. The binding was further confirmed by viscosity measurement and gel electrophoresis assay for CT-DNA and circular dichroism spectroscopy for SA. Moreover, molecular docking simulation demonstrated that the new compound binds mainly through hydrogen bonds to the groove of DNA and hydrogen bonds and van der Waals interactions to site I of SA.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
3
|
San Juan JA, Chakarawet K, He Z, Fernandez RL, Stevenson MJ, Harder NHO, Janisse SE, Wang LP, Britt RD, Heffern MC. Copper(II) Affects the Biochemical Behavior of Proinsulin C-peptide by Forming Ternary Complexes with Serum Albumin. J Am Chem Soc 2023. [PMID: 37486968 DOI: 10.1021/jacs.3c04599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Peptide hormones are essential signaling molecules with therapeutic importance. Identifying regulatory factors that drive their activity gives important insight into their mode of action and clinical development. In this work, we demonstrate the combined impact of Cu(II) and the serum protein albumin on the activity of C-peptide, a 31-mer peptide derived from the same prohormone as insulin. C-peptide exhibits beneficial effects, particularly in diabetic patients, but its clinical use has been hampered by a lack of mechanistic understanding. We show that Cu(II) mediates the formation of ternary complexes between albumin and C-peptide and that the resulting species depend on the order of addition. These ternary complexes notably alter peptide activity, showing differences from the peptide or Cu(II)/peptide complexes alone in redox protection as well as in cellular internalization of the peptide. In standard clinical immunoassays for measuring C-peptide levels, the complexes inflate the quantitation of the peptide, suggesting that such adducts may affect biomarker quantitation. Altogether, our work points to the potential relevance of Cu(II)-linked C-peptide/albumin complexes in the peptide's mechanism of action and application as a biomarker.
Collapse
Affiliation(s)
- Jessica A San Juan
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Zhecheng He
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Rebeca L Fernandez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Michael J Stevenson
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| | - Nathaniel H O Harder
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Samuel E Janisse
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Marie C Heffern
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
4
|
Preclinical Therapeutic Assessment of a New Chemotherapeutics [Dichloro(4,4’-Bis(2,2,3,3-Tetrafluoropropoxy) Methyl)-2,2’-Bipryridine) Platinum] in an Orthotopic Patient-Derived Xenograft Model of Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:pharmaceutics14040839. [PMID: 35456673 PMCID: PMC9031226 DOI: 10.3390/pharmaceutics14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cisplatin is one of the most common therapeutics used in treatments of several types of cancers. To enhance cisplatin lipophilicity and reduce resistance and side effects, a polyfluorinated bipyridine-modified cisplatin analogue, dichloro[4,4’-bis(2,2,3,3-tetrafluoropropoxy)methyl)-2,2’-bipryridine] platinum (TFBPC), was synthesized and therapeutic assessments were performed. TFBPC displayed superior effects in inhibiting the proliferation of several cisplatin-resistant human cancer cell lines, including MDA-MB-231 breast cancers, COLO205 colon cancers and SK-OV-3 ovarian cancers. TFBPC bound to DNA and formed DNA crosslinks that resulted in DNA degradation, triggering the cell death program through the PARP/Bax/Bcl-2 apoptosis and LC3-related autophagy pathway. Moreover, TFBPC significantly inhibited tumor growth in both animal models which include a cell line-derived xenograft model (CDX) of cisplatin-resistant MDA-MB-231, and a patient-derived xenograft (PDX) model of triple-negative breast cancers (TNBCs). Furthermore, the biopsy specimen from TFBPC-treated xenografts revealed decreased expressions of P53, Ki-67 and PD-L1 coupled with higher expression of cleaved caspase 3, suggesting TFBPC treatment was effective and resulted in good prognostic indications. No significant pathological changes were observed in hematological and biochemistry tests in blood and histological examinations from the specimen of major organs. Therefore, TFBPC is a potential candidate for treatments of patients suffering from TNBCs as well as other cisplatin-resistant cancers.
Collapse
|
5
|
Binding Studies of AICAR and Human Serum Albumin by Spectroscopic, Theoretical, and Computational Methodologies. Molecules 2020; 25:molecules25225410. [PMID: 33228044 PMCID: PMC7699360 DOI: 10.3390/molecules25225410] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/01/2022] Open
Abstract
The interactions of small molecule drugs with plasma serum albumin are important because of the influence of such interactions on the pharmacokinetics of these therapeutic agents. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) is one such drug candidate that has recently gained attention for its promising clinical applications as an anti-cancer agent. This study sheds light upon key aspects of AICAR’s pharmacokinetics, which are not well understood. We performed in-depth experimental and computational binding analyses of AICAR with human serum albumin (HSA) under simulated biochemical conditions, using ligand-dependent fluorescence sensitivity of HSA. This allowed us to characterize the strength and modes of binding, mechanism of fluorescence quenching, validation of FRET, and intermolecular interactions for the AICAR–HSA complexes. We determined that AICAR and HSA form two stable low-energy complexes, leading to conformational changes and quenching of protein fluorescence. Stern–Volmer analysis of the fluorescence data also revealed a collision-independent static mechanism for fluorescence quenching upon formation of the AICAR–HSA complex. Ligand-competitive displacement experiments, using known site-specific ligands for HSA’s binding sites (I, II, and III) suggest that AICAR is capable of binding to both HSA site I (warfarin binding site, subdomain IIA) and site II (flufenamic acid binding site, subdomain IIIA). Computational molecular docking experiments corroborated these site-competitive experiments, revealing key hydrogen bonding interactions involved in stabilization of both AICAR–HSA complexes, reaffirming that AICAR binds to both site I and site II.
Collapse
|
6
|
Saeidifar M, Sabbaghzadeh R, Nasab NA. Biophysical Investigation and Antitumor Potential of Heterocyclic Palladium-Based Agent: Cytotoxicity, Spectroscopic and Molecular Docking Approaches in Interaction with Human Serum Albumin. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1718717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Maryam Saeidifar
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Reihaneh Sabbaghzadeh
- Department of Biology, Faculty of sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Navid Ahmadi Nasab
- Faculty of Pharmacy, Hormozgan University of Medical Science, Bandar Abbas, Iran
| |
Collapse
|
7
|
Wang Y, Xiong C, Wu Z, Liu Y, Qiu Y, Cheng X, Zhou G. Synthesis, Characterization of a Baicalin‐Strontium(II) Complex and Its BSA‐Binding Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201902739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
- School of Chemical and Environmental EngineeringWuhan Polytechnic University Wuhan 430023 China
| | - Chunhong Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Xianzhong Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Guoqing Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
8
|
Shiekhzadeh A, Sohrabi N, Moghadam ME, Oftadeh M. Kinetic and Thermodynamic Investigation of Human Serum Albumin Interaction with Anticancer Glycine Derivative of Platinum Complex by Using Spectroscopic Methods and Molecular Docking. Appl Biochem Biotechnol 2019; 190:506-528. [PMID: 31388926 DOI: 10.1007/s12010-019-03078-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023]
Abstract
In this paper, a new anticancer Pt (II) complex, cis-[Pt (NH3)2(tertpentylgly)]NO3, was synthesized with glycine-derivative ligand and characterized. Cytotoxicity of this water-soluble Pt complex was studied against human cancer breast cell line of MCF-7. The interaction of human serum albumin (HSA) with Pt complex was studied by using UV-Vis, fluorescence spectroscopy methods, and molecular docking at 27 and 37 °C in the physiological situation (I = 10 mM, pH = 7.4). The negative [Formula: see text] and positive [Formula: see text] indicated that electrostatic force may be a major mode in the binding between Pt complex and HSA. Binding constant values were obtained through UV-Vis and fluorescence spectroscopy that reveal strong interaction. The negative Gibbs free energy that was obtained by using the UV-Vis method offers spontaneous interaction. Fluorescence quenching the intensity of HSA by adding Pt complex confirms the static mode of interaction is effective for this binding process. Hill coefficients, nH, Hill constant, kH, complex aggregation number around HSA, <J>, number of binding sites, g, HSA melting temperature, Tm, and Stern-Volmer constant, kSV, were also obtained. The kinetics of the interaction was studied, which showed a second-order kinetic. The results of molecular docking demonstrate the position of binding of Pt complex on HSA is the site I in the subdomain IIA.
Collapse
Affiliation(s)
| | - Nasrin Sohrabi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran.
| | | | - Mohsen Oftadeh
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
9
|
Li Y, Zheng L, Dong H, Li Y. Single-protein-based theranostic nanosystem within sub-10 nm scale for tumor imaging and therapy. RSC Adv 2015. [DOI: 10.1039/c5ra12648g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A single-protein-based theranostic nanosystem within sub-10 nm scale was developed for tumor imaging and therapy.
Collapse
Affiliation(s)
- Yan Li
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Li Zheng
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Haiqing Dong
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Yongyong Li
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai
- P. R. China
| |
Collapse
|