1
|
Ni H, Wu Y, Zong R, Ren S, Pan D, Yu L, Li J, Qu Z, Wang Q, Zhao G, Zhao J, Liu L, Li T, Zhang Y, Tu Q. Combination of Aspergillus niger MJ1 with Pseudomonas stutzeri DSM4166 or mutant Pseudomonas fluorescens CHA0- nif improved crop quality, soil properties, and microbial communities in barrier soil. Front Microbiol 2023; 14:1064358. [PMID: 36819023 PMCID: PMC9932699 DOI: 10.3389/fmicb.2023.1064358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Soil salinization and acidification seriously damage soil health and restricts the sustainable development of planting. Excessive application of chemical fertilizer and other reasons will lead to soil acidification and salinization. This study focus on acid and salinized soil, investigated the effect of phosphate-solubilizing bacteria, Aspergillus niger MJ1 combined with nitrogen-fixing bacteria Pseudomonas stutzeri DSM4166 or mutant Pseudomonas fluorescens CHA0-nif on crop quality, soil physicochemical properties, and microbial communities. A total of 5 treatments were set: regular fertilization (T1), regular fertilization with MJ1 and DSM4166 (T2), regular fertilization with MJ1 and CHA0-nif (T3), 30%-reducing fertilization with MJ1 and DSM4166 (T4), and 30%-reducing fertilization with MJ1 and CHA0-nif (T5). It was found that the soil properties (OM, HN, TN, AP, AK, and SS) and crop quality of cucumber (yield production, protein, and vitamin C) and lettuce (yield production, vitamin C, nitrate, soluble protein, and crude fiber) showed a significant response to the inoculated strains. The combination of MJ1 with DSM4166 or CHA0-nif influenced the diversity and richness of bacterial community in the lettuce-grown soil. The organismal system-, cellular process-, and metabolism-correlated bacteria and saprophytic fungi were enriched, which were speculated to mediate the response to inoculated strains. pH, OM, HN, and TN were identified to be the major factors correlated with the soil microbial community. The inoculation of MJ1 with DSM4166 and CHA0-nif could meet the requirement of lettuce and cucumber growth after reducing fertilization in acid and salinized soil, which provides a novel candidate for the eco-friendly technique to meet the carbon-neutral topic.
Collapse
Affiliation(s)
- Haiping Ni
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yuxia Wu
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rui Zong
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Shiai Ren
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Deng Pan
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lei Yu
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Jianwei Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Zhuling Qu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Qiyao Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Gengxing Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Jianzhong Zhao
- Shandong Rural Economic Management and Service Center, Jinan, China
| | - Lumin Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Tao Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Youming Zhang, ✉
| | - Qiang Tu
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Qiang Tu, ✉
| |
Collapse
|
2
|
Wang Q, Xiao C, Feng B, Chi R. Phosphate rock solubilization and the potential for lead immobilization by a phosphate-solubilizing bacterium ( Pseudomonas sp.). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:411-420. [PMID: 31847704 DOI: 10.1080/10934529.2019.1704134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) pollution is getting more and more serious in phosphate mining wastelands recently. However, seldom studies focused on the bioremediation of Pb pollution in phosphate mining wastelands by phosphate-solubilizing bacterium (PSB). In this study, a PSB named LA with high Pb tolerance was isolated from a phosphate mining wasteland. Based on its cell morphology, physiology, and phylogenetic analysis, it was identified as Pseudomonas sp. Its capabilities to solubilize mid-low-grade phosphate rock (PR) and immobilize Pb were assessed in this study. It was found that LA could effectively solubilize PR on PKO culture medium and release soluble phosphate in the culture medium. PR solubilization and Pb immobilization were investigated at different initial Pb concentrations and pH levels. The results showed that soluble phosphate was highly effective in immobilizing Pb and that when the initial concentration of Pb2+ was 100 mg/L, the immobilization rate of Pb was enhanced. Further, the mechanisms underlying solubilization of PR and biomineralization of Pb ions in LA were evaluated by Fourier transform infrared spectroscopy and X-ray diffraction. The results showed that some functional groups on the PR surface and LA were altered, and LA could form hydroxyapatite and pyrophosphate with Pb ions.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Chunqiao Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Bo Feng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruan Chi
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
3
|
Xiao C, Wu X, Liu T, Xu G, Chi R. Optimizations of particle size and pulp density for solubilization of rock phosphate by a microbial consortium from activated sludge. Prep Biochem Biotechnol 2017; 47:562-569. [PMID: 28032819 DOI: 10.1080/10826068.2016.1275008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Microbial solubilization of rock phosphate is getting more and more attention recently. However, the microorganisms used in previous studies were mostly single or known species, and seldom studies focused on the mixed microorganisms or microbial consortia from natural environments. In this study, a microbial consortium taken from activated sludge was used to solubilize two different mid-low-grade rock phosphates. The results showed that the microbial consortium could effectively solubilize the rock phosphates in National Botanical Research Institute's phosphate growth medium and released soluble phosphorus in the broth. The biomass increased gradually, whereas the pH decreased sharply during the solubilizing process. The maximum phosphorus solubilization was recorded at particle size of 150 µm. Higher or lower than this optimal particle size, the phosphorus solubilization decreased. The phosphorus solubilization gradually decreased with a larger pulp density from 1 to 5%, and the optimal pulp density was 1%. The solubilization level of microbial consortium varied with different rock phosphates. The results revealed that the soluble phosphorus released from high-silicon ore was higher than which from high-magnesium ore. A strong positive correlation between biomass and phosphorus solubilization in the broth was observed from regression analysis results, and the phosphorus solubilization also had a significant negative correlation with pH in the broth.
Collapse
Affiliation(s)
- Chunqiao Xiao
- a Key Laboratory for Green Chemical Process of Ministry of Education , Wuhan Institute of Technology , Wuhan , China.,b Hubei Novel Reactor and Green Chemical Technology Key Laboratory , Wuhan Institute of Technology , Wuhan , China
| | - Xiaoyan Wu
- a Key Laboratory for Green Chemical Process of Ministry of Education , Wuhan Institute of Technology , Wuhan , China.,b Hubei Novel Reactor and Green Chemical Technology Key Laboratory , Wuhan Institute of Technology , Wuhan , China
| | - Tingting Liu
- a Key Laboratory for Green Chemical Process of Ministry of Education , Wuhan Institute of Technology , Wuhan , China.,b Hubei Novel Reactor and Green Chemical Technology Key Laboratory , Wuhan Institute of Technology , Wuhan , China
| | - Guang Xu
- a Key Laboratory for Green Chemical Process of Ministry of Education , Wuhan Institute of Technology , Wuhan , China.,b Hubei Novel Reactor and Green Chemical Technology Key Laboratory , Wuhan Institute of Technology , Wuhan , China
| | - Ruan Chi
- a Key Laboratory for Green Chemical Process of Ministry of Education , Wuhan Institute of Technology , Wuhan , China.,b Hubei Novel Reactor and Green Chemical Technology Key Laboratory , Wuhan Institute of Technology , Wuhan , China
| |
Collapse
|